Only Stirling?

Calculus Level pending

( n ! ) 4 n ( 2 π ) 3 π ( n n ) 3 ( e n ) 3 ( n + 1 2 e ) 2 n + 1 ( 2 n + 1 3 ) n + 1 6 + 1 72 ( n + 31 90 ) 5929 2332800 ( n + 3055123 11205810 ) 3 \frac{\left (n! \right )^{4}}{\sqrt{n}(\sqrt{2\pi})^{3}\sqrt{\pi}\left (n^{n} \right )^{3}\left (e^{-n} \right )^{3}\left (\sqrt{\frac{n+\frac{1}{2}}{e}} \right )^{2n+1}\left (\sqrt{2n+\frac{1}{3}} \right )\sqrt{n+\frac{1}{6}+\frac{1}{72\left ( n+\frac{31}{90} \right )}-\frac{5929}{2332800\left ( n+\frac{3055123}{11205810} \right )^{3}}}}

Evaluate the expression above if n n approaches infinity.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We need the following approximation formulas for n ! n! ,

  1. Burnside's formula: n ! 2 π ( n + 1 2 e ) n + 1 2 \displaystyle\ n!\approx \sqrt{2\pi}\left ( \frac{n+\frac{1}{2}}{e} \right )^{n+\frac{1}{2}}
  2. Gosper's formula: n ! n n e n π 2 n + 1 3 \displaystyle\ n!\approx\ n^{n}e^{n}\sqrt{\pi}\sqrt{2n+\frac{1}{3}}
  3. Necdet Batir's formula: n ! n n e n 2 π ( n + 1 6 + 1 72 ( n + 31 90 ) 5929 2332800 ( n + 3055123 11205810 ) 3 ) \displaystyle n!\approx\ n^{n}e^{-n}\sqrt{2\pi \left (n+\frac{1}{6}+\frac{1}{72\left ( n+\frac{31}{90} \right )}-\frac{5929}{2332800\left ( n+\frac{3055123}{11205810} \right )^{3}} \right )}
  4. And of course, Stirling's formula.

We can rewrite the limit as: lim n ( n ! ) 4 2 π ( n + 1 2 e ) n + 1 2 n n e n π ( 2 n + 1 3 ) n n e n 2 π ( n + 1 6 + 1 72 ( n + 31 90 ) 5929 2332800 ( n + 3055123 11205810 ) 3 ) ( n n e n 2 π n ) \displaystyle \lim_{n}\frac{\left (n! \right )^{4}}{\sqrt{2\pi}\left (\frac{n+\frac{1}{2}}{e} \right )^{n+\frac{1}{2}}n^{n}e^{-n}\sqrt{\pi}\left (\sqrt{2n+\frac{1}{3}} \right )n^{n}e^{-n}\sqrt{2\pi \left (n+\frac{1}{6}+\frac{1}{72\left ( n+\frac{31}{90} \right )}-\frac{5929}{2332800\left ( n+\frac{3055123}{11205810} \right )^{3}} \right )}\left (n^{n}e^{-n}\sqrt{2\pi n} \right )} It's easy to see the aproximation formulas for each n ! n! , hence the sequence converges to 1 \boxed{1} .

Note: The 4th formula is VERY powerful & accurate. For example, let's take n = 6. n=6. Okey, 6 ! 6! is clearly 720 720 and the Necdet Batir's formula give us 719.999999376 719.999999376

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...