n = 1 ∑ ∞ ( ζ ( 2 ) − 1 − 2 2 1 − ⋯ − n 2 1 ) 2 = b a ζ ( k ) − d c ζ ( m )
The above equation is satisfied, where ζ is the Riemann zeta function and a , b , c , d , k , m are positive integers and g cd ( a , b ) = g cd ( c , d ) = 1 , what is a + b + c + d + k + m ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
We have, by Abel's summation formula,that n = 1 ∑ ∞ ( ζ ( 2 ) − 1 − 2 2 1 − ⋯ − n 2 1 ) 2 = 2 n = 1 ∑ ∞ ( n + 1 ) 2 n ( ζ ( 2 ) − H n ( 2 ) ) − n = 1 ∑ ∞ ( n + 1 ) 4 n = 2 n = 1 ∑ ∞ n + 1 1 ( ζ ( 2 ) − H n ( 2 ) ) − 2 n = 1 ∑ ∞ ( n + 1 ) 2 1 ( ζ ( 2 ) − H n ( 2 ) ) − ζ ( 3 ) + ζ ( 4 )
in order to find the value of the first sum,we need the following lemma
Lemma : n = 1 ∑ ∞ n 1 ( ζ ( 2 ) − H n ( 2 ) ) = ζ ( 3 )
Proof :
We apply Abel's summation formula and we get that n = 1 ∑ ∞ n 1 ( ζ ( 2 ) − H n ( 2 ) ) = n → ∞ lim H n ( ζ ( 2 ) − H n + 1 ( 2 ) ) + n = 1 ∑ ∞ ( n + 1 ) 2 H n = n = 1 ∑ ∞ ( ( n + 1 ) 2 H n + 1 − ( n + 1 ) 3 1 ) = ζ ( 3 )
we used that n = 1 ∑ ∞ n 2 H n = 2 ζ ( 3 )
the proof is simple and left as an exercise for the reader
Hint: ∫ 0 1 x n ln ( 1 − x ) = − n + 1 H n + 1
back to our solution we have
n = 1 ∑ ∞ n + 1 1 ( ζ ( 2 ) − H n ( 2 ) ) = n = 1 ∑ ∞ n + 1 1 ( ζ ( 2 ) − H n + 1 ( 2 ) ) + n = 1 ∑ ∞ ( n + 1 ) 3 1
using the lemma we get that the sum is equal to 2 ζ ( 3 ) − ζ ( 2 )
on the other hand,a calculation shows that n = 1 ∑ ∞ ( n + 1 ) 2 1 ( ζ ( 2 ) − H n ( 2 ) ) = − ∫ 0 1 x ( 1 − x ) ln x ( Li 2 ( x ) − x )
evaluating the integral we get 4 7 ζ ( 4 ) − ζ ( 2 )
putting all of those together we get the desired sum n = 1 ∑ ∞ ( ζ ( 2 ) − 1 − 2 2 1 − ⋯ − n 2 1 ) 2 = 3 ζ ( 3 ) − 2 5 ζ ( 4 )
Notation used: H n ( s ) = k = 1 ∑ n k s 1