Ooh, I know this one. Just convert it to definite integral!

Calculus Level 3

lim n k = 1 n ( k n ) n \lim_{n\to\infty} \sum_{k=1}^n\left(\frac{k}{n}\right)^n

What is the value of the limit above?

e + 1 e \frac{e+1}{e} 1 e + 2 e + 1 \frac{e+2}{e+1} e 1 e 2 \frac{e-1}{e-2} e e 1 \frac{e}{e-1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim n k = 1 n k n n n = lim n ( 1 n n n + 2 n n n + 3 n n n + + n n n n ) = lim n ( n n n n + ( n 1 ) n n n + ( n 2 ) n n n + + 1 n n n ) = lim n ( 1 + ( 1 1 n ) n + ( 1 2 n ) n + + 1 n n n ) = 1 + e 1 + e 2 + e 3 + = 1 1 e 1 = e e 1 \begin{aligned} L & = \lim_{n \to \infty} \sum_{k=1}^n \frac {k^n}{n^n} \\ & = \lim_{n \to \infty} \left(\frac {1^n}{n^n} + \frac {2^n}{n^n} + \frac {3^n}{n^n} + \cdots + \frac {n^n}{n^n} \right) \\ & = \lim_{n \to \infty} \left(\frac {n^n}{n^n} + \frac {(n-1)^n}{n^n} + \frac {(n-2)^n}{n^n} + \cdots + \frac {1^n}{n^n} \right) \\ & = \lim_{n \to \infty} \left(1 + \left(1-\frac 1n \right)^n + \left(1-\frac 2n \right)^n + \cdots + \frac {1^n}{n^n} \right) \\ & = 1 + e^{-1} + e^{-2} + e^{-3} + \cdots \\ & = \frac 1{1-e^{-1}} \\ & = \boxed{\frac e{e-1}} \end{aligned}

This proof needs some extra justification. It is true that ( 1 k n ) n e k \big(1 - \tfrac{k}{n}\big)^n \to e^{-k} as n n \to \infty for any k 0 k \ge 0 , but to deduce from this that lim n k = 0 n 1 ( 1 k n ) n = k = 0 e k \lim_{n \to \infty} \sum_{k=0}^{n-1} \big(1 - \tfrac{k}{n}\big)^n \; = \; \sum_{k=0}^\infty e^{-k} and hence obtain the desired result, is nontrivial - the individual summands converge, but we are combining more and more of them at a time, and this could makes things go wrong.


As an example of how things can go wrong, it is certainly true that k n 0 \tfrac{k}{n} \to 0 as n n \to \infty for any k k . But we cannot deduce from this that k = 1 n k n k = 1 0 = 0 n \sum_{k=1}^n \tfrac{k}{n} \; \to \; \sum_{k=1}^\infty 0 \; = \; 0 \hspace{2cm} n \to \infty since, of course, k = 1 n k n = 1 2 ( n + 1 ) n \sum_{k=1}^n \tfrac{k}{n} \; = \; \tfrac12(n+1) \to \infty \hspace{2cm} n \to \infty


We need a discrete version of the Dominated Convergence Theorem. In this case the observation that ( 1 k n ) n e k 0 k n 1 \big(1 - \tfrac{k}{n}\big)^n \; \le \; e^{-k} \hspace{2cm} 0 \le k \le n-1 is what is needed.

Given ε > 0 \varepsilon > 0 , find K K such that k = K e k < 1 2 ε \sum_{k=K}^\infty e^{-k} < \tfrac12\varepsilon . Thus 0 < e e 1 k = 0 n 1 ( 1 k n ) n k = 0 K 1 ( e k ( 1 k n ) n ) + k = K n 1 e k < k = 0 K 1 ( e k ( 1 k n ) n ) + 1 2 ε 0 \; < \; \frac{e}{e-1} - \sum_{k=0}^{n-1} \big(1 - \tfrac{k}{n}\big)^n \; \le \; \sum_{k=0}^{K-1} \left(e^{-k} - \big(1 - \tfrac{k}{n}\big)^n\right) + \sum_{k=K}^{n-1} e^{-k} \; < \; \sum_{k=0}^{K-1} \left(e^{-k} - \big(1 - \tfrac{k}{n}\big)^n\right) + \tfrac12\varepsilon for all n > K n > K . We can now find N k N_k such that 0 < e k ( 1 k n ) n < 1 2 K ε n > N k 0 \; < \; e^{-k} - \big(1 - \tfrac{k}{n}\big)^n < \tfrac{1}{2K}\varepsilon \hspace{2cm} n > N_k for all 0 k K 1 0 \le k \le K-1 , and hence we deduce that 0 < e e 1 k = 0 n 1 ( 1 k n ) n < ε n > m a x ( K , N 0 , N 1 , . . . , N K 1 ) 0 \; < \; \frac{e}{e-1} - \sum_{k=0}^{n-1}\big(1 - \tfrac{k}{n}\big)^n \; < \; \varepsilon \hspace{2cm} n > \mathrm{max}(K,N_0,N_1,...,N_{K-1}) This proves the result.

We need the fact that the terms ( 1 k n ) n \big(1 - \tfrac{k}{n}\big)^n are dominated uniformly in n n by e k e^{-k} to be able to make this argument.

Mark Hennings - 1 year, 7 months ago

Log in to reply

Thanks a lot.

Chew-Seong Cheong - 1 year, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...