Oops, I can't draw an inductor at paint

In the figure given below, the box is an inductor having inductance L L . A uniform horizontal magnetic field of strength B B perpendicular to the plane is present. The rails and the rod are perfectly conducting . The rod has a mass m m , and length l l . Initially, there is no current in the inductor and the rod is at rest. At this moment, it is let free.Let us denote the maximum current, the maximum speed, and the maximum displacement from this position be i m , v m i_{m}, v_{m} , and x m x_{m} respectively.
If i m v m x m i_{m}v_{m}x_{m} can be expressed as a m b g c L d B e l f am^bg^cL^dB^el^f , where a , b , c , d , e a,b,c,d,e and f f are dimensionless constants, then find a b c d e f abcdef


The answer is 720.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Jul 21, 2014

This is a very long solution

Let at any time the rod has a velocity v and the current flowing be i So we have the equations using faraday's law ξ = B v l = L d i d t \xi =Bvl=L\frac { di }{ dt } (i)

F = m g B i l = m d v d t F=mg-Bil=m\frac { dv }{ dt } (ii)

Differentiating (ii) w.r.t. time we get B l d i d t = m d 2 v d t 2 -Bl\frac { di }{ dt } =m\frac { { d }^{ 2 }v }{ d{ t }^{ 2 } } (iii)

Using (i) we have ( b 2 l 2 m L ) v = d 2 v d t 2 -(\frac { { b }^{ 2 }{ l }^{ 2 } }{ mL } )v=\frac { { d }^{ 2 }v }{ d{ t }^{ 2 } } (iv)

This is the equation of SHM. So we write v = A s i n ( ω t + ϕ ) v=Asin(\omega t+\phi ) where ω = b 2 l 2 m L \omega =\sqrt { \frac { { b }^{ 2 }{ l }^{ 2 } }{ mL } }

At t = 0 v = 0 t=0\quad v=0 ϕ = 0 v = A s i n ( ω t ) \Rightarrow \phi =0\quad \Rightarrow v=Asin(\omega t)

Differentiate to get a = ω A c o s ( ω t ) a=\omega Acos(\omega t)

A t t = 0 , a = g A = g ω v = g ω s i n ( ω t ) x = g ω 2 ( 1 c o s ( ω t ) ) i = B g l ω 2 L ( 1 c o s ( ω t ) ) v m a x = g ω , x m a x = 2 g ω 2 , i m a x = 2 B g l ω 2 L At \quad t=0,a=g\quad \Rightarrow A=\frac { g }{ \omega } \\ \Rightarrow v=\frac { g }{ \omega } sin(\omega t)\quad \quad \Rightarrow x=\frac { g }{ { \omega }^{ 2 } } (1-cos(\omega t))\\ \Rightarrow i=\frac { Bgl }{ { \omega }^{ 2 }L } (1-cos(\omega t))\quad \\ \Rightarrow { v }_{ max }=\frac { g }{ \omega } ,{ x }_{ max }=\frac { 2g }{ { \omega }^{ 2 } } ,{ i }_{ max }=\frac { 2Bgl }{ { \omega }^{ 2 }L }

Hence we get v m a x x m a x i m a x = 4 B g 3 l ω 5 L { v }_{ max }{ x }_{ max }{ i }_{ max }=\frac { 4B{ g }^{ 3 }l }{ { \omega }^{ 5 }L }

P u t t h e v a l u e o f ω t o g e t v m a x x m a x i m a x = 4 m 5 / 2 g 3 L 3 / 2 B 4 l 4 a = 4 , b = 5 / 2 , c = 3 , d = 3 / 2 , e = 4 , f = 4 a b c d e f = 720 Put\quad the\quad value\quad of \quad \omega \quad to\quad get\quad \\ { v }_{ max }{ x }_{ max }{ i }_{ max }=4{ m }^{ 5/2 }{ g }^{ 3 }{ L }^{ 3/2 }{ B }^{ -4 }{ l }^{ -4 }\\ \Rightarrow a=4,b=5/2,c=3,d=3/2,e=-4,f=-4\\ \Rightarrow \boxed { abcdef=720 }

Nice approach

Kïñshük Sïñgh - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...