Preserving Sines

Geometry Level 4

If 9 8 sin 5 0 = a + b csc 5 0 \sqrt{9-8\sin50^\circ} = a+b \csc 50^\circ , where a a and b b are integers, find a × b a\times b .

Hint : You may need to use triple angle formula .


The answer is -3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rushikesh Jogdand
May 18, 2016

Relevant wiki: Sum and Difference Trigonometric Formulas - Problem Solving

Let y = 9 8 sin 5 0 y=\sqrt{9-8\sin50^\circ}

Hint in problem : mention of triple angle formula as well as " csc \text{csc} " which prompt to multiply numerator and denominator by sin ( x ) \sin(x)

So, y = 9 sin 2 ( 5 0 ) 8 sin 3 ( 5 0 ) sin ( 5 0 ) y=\frac{\sqrt{9\sin^2(50^\circ)-8\sin^3(50^\circ)}}{\sin(50^\circ)} = 9 sin 2 ( 5 0 ) 6 sin ( 5 0 ) + 6 sin ( 5 0 ) 8 sin 3 ( 5 0 ) sin ( 5 0 ) =\frac{\sqrt{9\sin^2(50^\circ)-6\sin(50^\circ)+6\sin(50^\circ)-8\sin^3(50^\circ)}}{\sin(50^\circ)} = 9 sin 2 ( 5 0 ) 6 sin ( 5 0 ) + 2 × sin ( 3 × 5 0 ) sin ( 5 0 ) =\frac{\sqrt{9\sin^2(50^\circ)-6\sin(50^\circ)+2\times \sin(3\times 50^\circ)}}{\sin(50^\circ)} = 9 sin 2 ( 5 0 ) 6 sin ( 5 0 ) + 1 sin ( 5 0 ) =\frac{\sqrt{9\sin^2(50^\circ)-6\sin(50^\circ)+1}}{\sin(50^\circ)} = 3 sin ( 5 0 ) 1 sin ( 5 0 ) =\frac{|3\sin(50^\circ)-1|}{\sin(50^\circ)} a × b = 3 \Rightarrow a\times b=\boxed{-3}

Ahmad Saad
May 18, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...