Opening a Door

In the x y z xyz -coordinate system, a 20 kg 20 \text{ kg} door is hinged so that it can rotate freely about the z z -axis (its length is along the z z -axis). The door is 1 m 1 \text{ m} wide, and its width is initially aligned with the x x -axis. The door is initially at rest.

A constant force ( F x , F y ) = ( 10 N , + 10 3 N ) (F_x,F_y) = \big(-10 \text{ N}, +10 \sqrt{3} \text{ N}\big) is applied to the door at its far edge (farthest from the z z -axis).

What is the door's angular speed ( ( in rad/s ) \text{rad/s}) when its width is first aligned with the y y -axis?


Details and Assumptions:

  • Neglect gravity and air resistance.
  • The door's mass is uniformly distributed over its width.
  • Give your answer to 3 decimal places.


The answer is 2.863.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sardor Yakupov
Jul 21, 2017

M = r × F ; M ( r y F z F y r z ; r z F x F z r x ; r x F y F x r y ) ; M ( 0 ; 0 ; 10 3 ) ; I β = M ; β = M I ; \overrightarrow { M } =\overrightarrow { r } \times \overrightarrow { F } ;\\ \overrightarrow { M } ({ r }_{ y }{ F }_{ z }-{ F }_{ y }{ r }_{ z };{ r }_{ z }{ F }_{ x }-{ F }_{ z }{ r }_{ x };{ r }_{ x }{ F }_{ y }-{ F }_{ x }{ r }_{ y });\\ \overrightarrow { M } (0;0;10\sqrt { 3 } );\\ I\beta =\overrightarrow { M } ;\\ \beta =\frac { \overrightarrow { M } }{ I } ;

Here we apply formula of accelerated motion, angle is pi/2. Also, I = 1 3 m l 2 I=\frac { 1 }{ 3 } m{ l }^{ 2 }

φ = ω 2 2 β ω = π β = π M I = 10 3 π 1 3 20 2.86 r a d / s \varphi =\frac { { \omega }^{ 2 } }{ 2\beta } \\ \omega =\sqrt { \pi \beta } =\sqrt { \frac { \pi \overrightarrow { \left| M \right| } }{ I } } =\sqrt { \frac { 10\sqrt { 3 } \pi }{ \frac { 1 }{ 3 } 20 } } \approx 2.86rad/s\\ \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...