Ones And Zeroes

Logic Level 1

10 10 10 10 = 101 \large 10\; \Box\; 10\; \Box\; 10\; \Box\; 10=101

What series of signs will make the equation above true?

Obey the order of operations .

- - - + × + - \times × + ÷ \times + \div ÷ + \div + -

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sam Bealing
Jul 5, 2016

Relevant wiki: Arithmetic Puzzles - Operator Search

We need to use order of operations ( BODMAS ) to solve this problem. Checking the options we see:

10 × 10 + 10 ÷ 10 = 101 10 \boxed{\times} 10 \boxed{+} 10 \boxed{÷} 10=101

× , + , ÷ \boxed{\boxed{\times, +, ÷}}

10x10=100 100+10=110 110÷10=11, Not 101

Javier Sanchez - 4 years, 10 months ago

Log in to reply

You must use BODMAS which tells you that you do D ivision before A ddition so:

10 × 10 + 10 ÷ 10 = ( 10 × 10 ) + 10 ÷ 10 As we do multiplication first = 100 + 10 ÷ 10 = 100 + ( 10 ÷ 10 ) Division comes next = 100 + 1 And finally addition = 101 As we wanted \begin{aligned} & 10 \times 10 + 10 \div 10 \\ = & (10 \times 10) + 10 \div 10 \quad \quad \color{#3D99F6}{\text{As we do multiplication first}} \\ = & 100 + 10 \div 10 \\ = & 100 + (10 \div 10) \quad \quad \color{#3D99F6}{\text{Division comes next}} \\ = & 100 + 1 \quad \quad \color{#3D99F6}{\text{And finally addition}} \\ = & \boxed{\boxed{101}} \quad \quad \color{#3D99F6}{\text{As we wanted}} \end{aligned}

Sam Bealing - 4 years, 9 months ago

You must use the BODMAS Rule to get the right solution .

Satwik Murarka - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...