Optimization 3.2

Calculus Level 3

In the above right isosceles triangular prism with D F D E \overline{\rm DF} \cong \overline{\rm DE} , let A E F D = a A_{\triangle{EFD}} = a and the area of the rectangle A A D E B = 1 A_{ADEB} = 1 .

(1): What is largest value of a a for which the distance d d obtains a minimum?

(2): What is the minimum distance d d ?

(3): Using the largest value of a a , what is the value x x of the base B C BC of the isosceles triangle, the value h h^{*} of the altitude A H AH of the isosceles triangle, the value r r of each leg of the isosceles triangle, and θ = m C A B \theta = m\angle{CAB} in degrees?

(4): Using the largest value of a a , what is the height H H of the right isosceles triangular prism and λ = m F A E \lambda = m\angle{FAE} in degrees?

Find: d \lfloor{d}\rfloor + x \lfloor{x}\rfloor + r \lfloor{r}\rfloor + h \lfloor{h^{*}}\rfloor + θ \lfloor{\theta}\rfloor + H \lfloor{H}\rfloor + λ \lfloor{\lambda}\rfloor .

Refer to previous problem

.


The answer is 154.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 5, 2018

x = 2 r sin ( θ 2 ) x = 2r\sin(\dfrac{\theta}{2}) and h = r cos ( θ 2 ) h^{*} = r\cos(\dfrac{\theta}{2}) A A B C = 1 2 r 2 sin ( θ ) = a r = 2 a sin ( θ ) \implies A_{\triangle{ABC}} = \dfrac{1}{2}r^2\sin(\theta) = a \implies r = \sqrt{\dfrac{2a}{\sin(\theta)}} .

r H = 1 H = sin ( θ ) 2 a D ( θ ) = d 2 ( θ ) = sin ( θ ) 2 a + 2 a sin ( θ ) d D d θ = cos ( θ ) 2 a 2 a cos ( θ ) sin 2 ( θ ) = rH = 1 \implies H = \sqrt{\dfrac{\sin(\theta)}{2a}} \implies D(\theta) = d^2(\theta) = \dfrac{\sin(\theta)}{2a} + \dfrac{2a}{\sin(\theta)} \implies \dfrac{dD}{d\theta} = \dfrac{\cos(\theta)}{2a} - \dfrac{2a\cos(\theta)}{\sin^2(\theta)} =

cos ( θ ) ( sin 2 ( θ ) 4 a 2 2 a sin 2 ( θ ) ) = 0. \cos(\theta)(\dfrac{\sin^2(\theta) - 4a^2}{2a\sin^2(\theta)}) = 0.

For ( 0 < θ < π ) (0 < \theta < \pi) sin ( θ ) > 0 sin ( θ ) = 2 a \:\ \sin(\theta) > 0 \implies \sin(\theta) = 2a \implies ( 0 < a = sin ( θ ) 2 1 2 ) (0 < a = \dfrac{\sin(\theta)}{2} \leq \dfrac{1}{2}) .

d 2 θ d θ 2 = 2 cot 2 ( θ ) > 0 \dfrac{d^2\theta}{d\theta^2} = 2\cot^2(\theta) > 0 for θ π 2 \theta \neq \dfrac{\pi}{2} .

For θ = π 2 \theta = \dfrac{\pi}{2} and a = 1 2 a = \dfrac{1}{2} :

On ( 0 , π 2 ) d D d θ < 0 (0,\dfrac{\pi}{2}) \implies \dfrac{dD}{d\theta} < 0 and on ( π 2 , π ) d D d θ > 0 (\dfrac{\pi}{2},\pi) \implies \dfrac{dD}{d\theta} > 0 d \implies d is minimized wherever ( 0 < a 1 2 ) (0 < a \leq \dfrac{1}{2}) .

(1) a m a x = 1 2 a_{max} = \dfrac{1}{2}

(2) d m i n = 2 d_{min} = \sqrt{2}

(3) r = 1 r = 1 and a m a x = 1 2 θ = π 2 x = 2 sin ( π 4 ) = 2 a_{max} = \dfrac{1}{2} \implies \theta = \dfrac{\pi}{2} \implies x = 2\sin(\dfrac{\pi}{4}) = \sqrt{2} and h = 1 2 h^{*} = \dfrac{1}{\sqrt{2}} and converting to degrees θ = 9 0 \theta = 90^{\circ}

Let λ = m F A E \lambda = m\angle{FAE} .

(4) Clearly λ = 6 0 \lambda = \boxed{60^{\circ}} , since F A E \triangle{FAE} is an equilateral triangle and H = 1 H = 1 .

Using the law of cosines 4 ( 1 cos ( λ ) ) = 2 cos ( λ ) = 1 2 λ = 6 0 \implies 4(1 - \cos(\lambda)) = 2 \implies \cos(\lambda) = \dfrac{1}{2} \implies \lambda = 60^{\circ}

d = 2 = x , r = 1 , h = 1 2 , θ = 9 0 , H = 1 \therefore d = \sqrt{2} = x, r = 1, h^{*} = \dfrac{1}{\sqrt{2}},\theta = 90^{\circ}, H = 1 and λ = 6 0 d \lambda = 60^{\circ} \implies \lfloor{d}\rfloor + x \lfloor{x}\rfloor + r \lfloor{r}\rfloor + h \lfloor{h^{*}}\rfloor + θ \lfloor{\theta}\rfloor + H \lfloor{H}\rfloor + λ = 154 \lfloor{\lambda}\rfloor = \boxed{154}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...