Minimizing Resultant Volume

Calculus Level 5

Let a a and b b be real constants. Minimize the volume of the region bounded between y = x 2 + a x + b y =x^2 + ax+b , x = 0 x= 0 and x = 1 x=1 , when it is revolved about the x x -axis.

If this volume can be expressed as m n π \dfrac mn \pi , where m m and n n are coprime positive integers, submit your answer as m + n m+n .


The answer is 181.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The idea to solve this question is very similar to another recent problem .


We want to minimize V a , b = π 0 1 y 2 d x = π 0 1 ( x 2 + a x + b ) 2 d x = π 0 1 ( x 4 + x 3 ( 2 a ) + x 2 ( a 2 + 2 b ) + x ( 2 a b ) + b 2 ) d x = π [ 1 3 x 3 ( a 2 + 2 b ) + a b x 2 + a x 4 2 + b 2 x + x 5 5 ] x = 0 x = 1 = π [ 1 3 x 3 ( a 2 + 2 b ) + a b x 2 + a x 4 2 + b 2 x + x 5 5 ] x = 0 x = 1 = π 30 ( 10 a 2 + 30 a b + 15 a + 30 b 2 + 20 b + 6 ) \begin{aligned} V_{a,b} &=& \pi \int_0^1 y^2 \, dx \\ &=& \pi \int_0^1 (x^2 + ax + b)^2 \, dx \\ &=& \pi \int_0^1 (x^4 + x^3(2a) + x^2 (a^2 + 2b) + x(2ab) + b^2) \, dx \\ &=& \pi \left [\dfrac13 x^3(a^2 + 2b) +ab x^2 + \dfrac{ax^4}2 + b^2 x + \dfrac{x^5}5 \right]_{x=0}^{x=1} \\ &=& \pi \left [\dfrac13 x^3(a^2 + 2b) +ab x^2 + \dfrac{ax^4}2 + b^2 x + \dfrac{x^5}5 \right]_{x=0}^{x=1} \\ &=& \dfrac{\pi}{30} (10a^2 + 30ab + 15a + 30b^2 + 20b + 6) \end{aligned}

What's left is to minimize the expression 10 a 2 + 30 a b + 15 a + 30 b 2 + 20 b + 6 10a^2 + 30ab + 15a + 30b^2 + 20b + 6 via completing the square ,

10 a 2 + 30 a b + 15 a + 30 b 2 + 20 b + 6 = 5 8 ( 4 a + 6 b + 3 ) 2 + 15 2 ( b 1 6 ) 2 + 1 6 0 + 0 + 1 6 . 10a^2 + 30ab + 15a + 30b^2 + 20b + 6 = \dfrac58 (4a + 6b+3)^2 + \dfrac{15}2\left( b - \dfrac16 \right)^2 + \dfrac16 \geq 0 + 0 + \dfrac16 \; .

Hence the minimum volume is π 30 1 6 = 1 180 π \dfrac{\pi}{30} \cdot \dfrac16 = \dfrac1{180} \pi , and it is attained when { 4 a + 6 b + 3 = 0 b 1 6 = 0 a = 1 , b = 1 6 \begin{cases} 4a + 6b + 3 = 0 \\ b - \dfrac16 = 0 \end{cases} \Leftrightarrow a = -1, b = \dfrac16 .

Our answer is 1 + 180 = 181 1 + 180 = \boxed{181} .

Another approach is to observe that 1 π V a , b = 1 3 ( a + 1 ) 2 + ( a + 1 ) ( b 1 6 ) + ( b 1 6 ) 2 + 1 180 \tfrac{1}{\pi}V_{a,b} \; = \; \tfrac13(a+1)^2 + (a+1)(b-\tfrac16) + (b-\tfrac16)^2 + \tfrac{1}{180} and that the quadratic form 1 3 X 2 + X Y + Y 2 \tfrac13X^2 + XY + Y^2 is positive definite.

Mark Hennings - 4 years, 7 months ago
Rocco Dalto
Nov 5, 2016

Let y = x 2 + a x + b {\bf y = x^2 + ax + b } .

The volume of the region bounded by the curve y = x 2 + a x + b {\bf y = x^2 + ax + b } , the x {\bf x } axis, x = 0 , {\bf x = 0, } and x = 1 {\bf x = 1 } , when revolved about the x {\bf x } axis is:

V = π 0 1 ( x 2 + a x + b ) 2 d x = {\bf V = \pi \int_{0}^{1} (x^2 + ax + b) ^2 \: dx = }

π 0 1 ( x 4 + 2 a x 3 + ( a 2 + 2 b ) x 2 + 2 a b x + b 2 = {\bf \pi \int_{0}^{1} (x^4 + 2ax^3 + (a^2 + 2b)x^2 +2abx + b^2 = }

π 0 1 ( 1 5 x 5 + a 2 x 4 + ( a 2 + 2 b 3 ) x 3 + a b x 2 + b 2 x ) {\bf \pi \int_{0}^{1} (\frac{1}{5}x^5 + \frac{a}{2}x^4 + (\frac{a^2 + 2b}{3})x^3 + abx^2 + b^2x) }

π ( 1 5 + a 2 + a 2 + 2 b 3 + a b + b 2 ) {\bf \pi * (\frac{1}{5} + \frac{a}{2} + \frac{a^2 + 2b}{3} + ab + b^2) \implies } .

V ( a , b ) = π ( 1 5 + a 2 + a 2 + 2 b 3 + a b + b 2 ) {\bf V(a,b) = \pi * (\frac{1}{5} + \frac{a}{2} + \frac{a^2 + 2b}{3} + ab + b^2) }

V a = 1 2 + 2 a 3 + b = 0 {\bf \implies \frac{\partial V}{\partial a} = \frac{1}{2} + \frac{2a}{3} + b = 0 } and V b = 2 3 + a + 2 b = 0 {\bf \frac{\partial V}{\partial b} = \frac{2}{3} + a + 2b = 0 \implies }

4 a + 6 b = 3 {\bf 4a + 6b = -3 }

3 a + 6 b = 2 {\bf 3a + 6b = -2 }

a = 1 , b = 1 6 {\bf \implies a = -1, b = \frac{1}{6} }

Let D = [ 2 V a 2 2 V b a 2 V a b 2 V b 2 ] D = [ \begin{array}{cc} \frac{\partial^2 V}{\partial a^2} & \frac{\partial^2 V}{\partial b \partial a} \\ \frac{\partial^2 V}{\partial a \partial b} & \frac{\partial^2 V}{\partial b^2} \\ \end{array} ]

If d e t ( D ) > 0 {\bf det(D) > 0 } and 2 V a 2 > 0 {\bf \frac{\partial^2 V}{\partial a^2} > 0} and 2 V b 2 > 0 , {\bf \frac{\partial^2 V}{\partial b^2} > 0, } then we have a relative min at ( a , b ) {\bf (a ,b) }

2 V a 2 = 2 3 > 0 {\bf \frac{\partial^2 V}{\partial a^2} = \frac{2}{3} > 0 } and 2 V b 2 = 1 > 0 {\bf \frac{\partial^2 V}{\partial b^2} = 1 > 0 } and 2 V a b = 2 V b a = 0 {\bf \frac{\partial^2 V}{\partial a \partial b} = \frac{\partial^2 V}{\partial b \partial a} = 0 }

d e t ( D ) = 2 3 > 0 {\bf \implies det(D) = \frac{2}{3} > 0 \implies } we have a relative min at ( a = 1 , b = 1 6 ) {\bf (a = -1,b = \frac{1}{6}) } and the volume V = 1 180 π = a b π {\bf V = \frac{1}{180}\pi = \frac{a}{b}\pi \implies}

a + b = 181. {\bf a + b = 181. }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...