Optimization Problem 2

Geometry Level pending

Using a 4 n 4n -gonal prism, for each n N n \in \mathbb{N} let the area of each base be a n a_{n} and the volume V n = 1 V_{n} = 1 .

Find the the sequence a n a_{n} that minimizes the distance d n d_{n} , then find lim n d n \lim_{n \rightarrow \infty} d_{n} .

In the above octagonal prism n = 2 n = 2 and d = d 2 d = d_{2} .

Express the answer to two decimal places.

Note: My intention is to use the 4 n 4n -gonal prism and not to use a cylinder. If V n V_{n} is the volume of an n n -gonal prism, then lim n V n = V c y l i n d e r \lim_{n \rightarrow \infty} V_{n} = V_{cylinder} , so you will get the correct result if you use a cylinder. Attempt doing the problem using the 4 n 4n -gonal prism.


The answer is 1.49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 31, 2018

For area of 4 n g o n 4n - gon :

Let P Q = x PQ = x be a side of the n g o n n - gon , P B = Q B = m PB = QB= m , A B = h AB = h^* , and Q B A = π 4 n \angle{QBA} = \dfrac{\pi}{4n} .

x 2 = m sin ( π 4 n ) m = x 2 sin ( π 4 n ) h = x 2 cot ( π 4 n ) \dfrac{x}{2} = m \sin(\dfrac{\pi}{4n}) \implies m = \dfrac{x}{2 \sin(\dfrac{\pi}{4n})} \implies h^* = \dfrac{x}{2} \cot(\dfrac{\pi}{4n}) \implies the area of the 4 n 4n -gon A = n x 2 cot ( π 4 n ) = a x = a tan ( π 4 n ) n m = 1 2 ( a n ) csc ( π 4 n ) sec ( π 4 n ) A = nx^2\cot(\dfrac{\pi}{4n}) = a \implies x = \sqrt{\dfrac{a\tan(\dfrac{\pi}{4n})}{n}} \implies m = \dfrac{1}{2}\sqrt{(\dfrac{a}{n})\csc(\dfrac{\pi}{4n})\sec(\dfrac{\pi}{4n})} .

The volume V = a H = 1 H = 1 a D ( a ) = d 2 ( a ) = 4 m 2 + H 2 = V = aH = 1 \implies H = \dfrac{1}{a} \implies D(a) = d^2(a) = 4m^2 + H^2 = ( a n ) csc ( π 4 n ) sec ( π 4 n ) + 1 a 2 (\dfrac{a}{n})\csc(\dfrac{\pi}{4n})\sec(\dfrac{\pi}{4n}) + \dfrac{1}{a^2} \implies d D d a = csc ( π 4 n ) sec ( π 4 n ) a 3 2 n n a 3 = 0 \dfrac{dD}{da} = \dfrac{\csc(\dfrac{\pi}{4n})\sec(\dfrac{\pi}{4n})a^3 - 2n}{n a^3} = 0

a > 0 a ( n ) = ( n sin ( π 2 n ) ) 1 3 a > 0 \implies a(n) = (n\sin(\dfrac{\pi}{2 n}))^{\dfrac{1}{3}} and d 2 D d a 2 = 6 a 4 > 0 \dfrac{d^2D}{da^2} = \dfrac{6}{a^4} > 0 for a ( n ) = ( n sin ( π 2 n ) ) 1 3 a(n) = (n\sin(\dfrac{\pi}{2 n}))^{\dfrac{1}{3}} \implies min at a ( n ) = ( n sin ( π 2 n ) ) 1 3 a(n) = (n\sin(\dfrac{\pi}{2 n}))^{\dfrac{1}{3}} .

D ( n ) = d 2 ( n ) = 3 ( n sin ( π 2 n ) ) 2 3 D(n) = d^2(n) = \dfrac{3}{(n\sin(\dfrac{\pi}{2 n}))^{\dfrac{2}{3}}} \implies d ( n ) = 3 ( n sin ( π 2 n ) ) 1 3 d(n) = \dfrac{\sqrt{3}}{(n\sin(\dfrac{\pi}{2 n}))^{\dfrac{1}{3}}} .

Let j n = n sin ( π 2 n ) . j_{n} = n\sin(\dfrac{\pi}{2 n}).

Using the inequality: cos ( x ) < sin ( x ) x < 1 π 2 cos ( π 2 n ) < j n < π 2 \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \dfrac{\pi}{2}\cos(\dfrac{\pi}{2n}) < j_{n} < \dfrac{\pi}{2} \implies lim n j n = π 2 \lim_{n \rightarrow \infty} j_{n} = \dfrac{\pi}{2} \implies lim n d ( n ) = 3 ( π 2 ) 1 3 1.49 \lim_{n \rightarrow \infty} d(n) = \dfrac{\sqrt{3}}{(\dfrac{\pi}{2})^{\dfrac{1}{3}}} \approx \boxed{1.49}

To show lim n V n = V c y l i n d e r \lim_{n \rightarrow \infty} V_{n} = V_{cylinder} :

Let P Q = x PQ = x be a side of the n g o n n - gon , P B = Q B = r PB = QB= r , A B = h AB = h^* , and Q B A = π n \angle{QBA} = \dfrac{\pi}{n} .

x = 2 r sin ( π n ) x = 2r\sin(\dfrac{\pi}{n}) and h = r cos ( π n ) h^{*} = r\cos(\dfrac{\pi}{n}) .

Let H H be the height of the prism V n = n 2 sin ( 2 π n ) r 2 H . \implies V_{n} = \dfrac{n}{2}\sin(\dfrac{2\pi}{n})r^2H.

Using the inequality: cos ( x ) < sin ( x ) x < 1 \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies π cos ( 2 π n ) < n 2 sin ( 2 π n ) < π \pi\cos(\dfrac{2\pi}{n}) < \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) < \pi lim n n 2 sin ( 2 π n ) = π \implies \lim_{n \rightarrow \infty} \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) = \pi \implies lim n V n = π r 2 H = V c y l i n d e r . \lim_{n \rightarrow \infty} V_{n} = \pi r^2 H = V_{cylinder}.

Doing the problem using a cylinder:

π r 2 = a r = a π \pi r^2 = a \implies r = \sqrt{\dfrac{a}{\pi}} and the volume V = a h = 1 h = 1 a V = ah = 1 \implies h = \dfrac{1}{a} \implies

D ( a ) = d 2 ( a ) = 4 r 2 + h 2 = 4 a π + 1 a 2 D(a) = d^2(a) = 4r^2 + h^2 = \dfrac{4a}{\pi} + \dfrac{1}{a^2} \implies d D d a = 2 a 3 π ( 2 a 3 π ) = 0 a = ( π 2 ) 1 3 \dfrac{dD}{da} = \dfrac{2}{a^3\pi}(2a^3 - \pi) = 0 \implies a = (\dfrac{\pi}{2})^{\dfrac{1}{3}}

d 2 D d a 2 = 6 a 4 > 0 \dfrac{d^2D}{da^2} = \dfrac{6}{a^4} > 0 for a = ( π 2 ) 1 3 a = (\dfrac{\pi}{2})^{\dfrac{1}{3}} \implies min at a = ( π 2 ) 1 3 a = (\dfrac{\pi}{2})^{\dfrac{1}{3}} and d = 3 ( π 2 ) 1 3 1.49 d = \dfrac{\sqrt{3}}{(\dfrac{\pi}{2})^{\dfrac{1}{3}}} \approx \boxed{1.49}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...