Oral Quest

Algebra Level 3

A = ( w + x ) ( y z ) + ( w + y ) ( z x ) + ( w + z ) ( x y ) B = ( w x ) ( y z ) + ( w y ) ( z x ) + ( w z ) ( x y ) \large{A=(w+x)(y-z)+(w+y)(z-x)+(w+z)(x-y) \\ B=(w-x)(y-z)+(w-y)(z-x)+(w-z)(x-y)}

Compare A , B A,B for w , x , y , z R w,x,y,z \in \mathbb{R}

A > B A>B A = B A=B Cannot be determined A < B A<B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Jul 29, 2015

A = ( w + x ) ( y z ) + ( w + y ) ( z x ) + ( w + z ) ( x y ) = w y w z + x y x z + w z w x + y z x y + w x w y x z z y A = 0 B = ( w x ) ( y z ) + ( w y ) ( z x ) + ( w z ) ( x y ) = w y w z x y + x z + w z w x y z + x y + w x w y x z + z y B = 0 A = B A=(w+x)(y-z)+(w+y)(z-x)+(w+z)(x-y)\\ = wy-wz+xy-xz+wz-wx+yz-xy+wx-wy-xz-zy \\ \Rightarrow A=0 \\ B=(w-x)(y-z)+(w-y)(z-x)+(w-z)(x-y) \\ = wy-wz-xy+xz+wz-wx-yz+xy+wx-wy-xz+zy \\ \Rightarrow B=0 \\ \large \boxed{A=B}

K T
Aug 20, 2020

When expanding, all terms vanish, so A = B = 0 A = B = 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...