Order of Huge Numbers

Algebra Level 2

11 1 110 , 11 0 111 , 10 9 112 , 11 2 109 \large \boxed{ 111^{110} , \quad 110^{111} , \quad 109^{112} , \quad 112^{109} }

Which option is correct about the order of the above numbers?

10 9 112 > 11 0 111 > 11 1 110 > 11 2 109 109^{112} > 110^{111} > 111^{110} > 112^{109} 10 9 112 > 11 1 110 > 11 0 111 > 11 2 109 109^{112} > 111^{110} > 110^{111} > 112^{109} 11 1 110 > 11 0 111 > 10 9 112 > 11 2 109 111^{110} > 110^{111} > 109^{112} > 112^{109} 11 1 110 > 11 2 109 > 10 9 112 > 11 0 111 111^{110} > 112^{109} > 109^{112} > 110^{111}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Surya Sharma
Feb 15, 2016

Find the number of digits in their expansion by using logarithms /(111^110/) has 225 digits /(110^111/) has 227 digits /(109^112/) has 229 digits /(112^109/) has 224 digits And hence the answer

Otto Bretscher
Feb 15, 2016

f ( x ) = x 221 x f(x)=x^{221-x} is decreasing on [ 109 , 112 ] [109,112] since f ( x ) = x 220 x ( x + x ln ( x ) 221 ) < 0 f'(x)=-x^{220-x}(x+x\ln(x)-221)<0 . Note that x ln ( x ) > 400 x\ln(x)>400 on the given interval.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...