Origami Fun 2

Geometry Level 4

The tip of an equilateral triangular paper is folded at an angle α \alpha about an altitude, so that:

  • It touches the bottom edge of the paper
  • A 1 + A 2 A_1 + A_2 is the area of the resulting folded triangle

If the angle is α \alpha in radians, evaluate 1 0 5 α \lfloor 10^5 \alpha \rfloor .


The answer is 34543.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Following the labelling shown on the figure and due to symmetry, we have A H = H F AH=HF and A D E = F D E \triangle ADE=\triangle FDE .
Moreover, [ A D E ] = [ F D E ] = A 1 + A 2 \left[ ADE \right]=\left[ FDE \right]={{A}_{1}}+{{A}_{2}} and [ A D E ] + [ F D E ] + A 1 + A 2 = [ A B C ] \left[ ADE \right]+\left[ FDE \right]+{{A}_{1}}+{{A}_{2}}=\left[ ABC \right] thus, [ A D E ] = 1 3 [ A B C ] \left[ ADE \right]=\frac{1}{3}\left[ ABC \right] Let A B C \triangle ABC be of unit side length and denote A H AH by x x .
Then, on A M F \triangle AMF ,

A F = A M cos a 2 x = 3 2 cos a x 2 = 3 16 1 cos 2 a x 2 = 3 16 ( 1 + tan 2 a ) AF=\frac{AM}{\cos a}\Rightarrow 2x=\frac{\frac{\sqrt{3}}{2}}{\cos a}\Rightarrow {{x}^{2}}=\frac{3}{16}\cdot \frac{1}{{{\cos }^{2}}a}\Rightarrow {{x}^{2}}=\frac{3}{16}\cdot \left( 1+{{\tan }^{2}}a \right) Consequently,

[ A D E ] = 1 3 3 4 1 2 D E A H = 3 12 ( D H + H E ) A H = 3 6 ( x tan ( π 6 + a ) + x tan ( π 6 a ) ) x = 3 6 x 2 ( tan π 6 + tan a 1 tan π 6 tan a + tan π 6 tan a 1 + tan π 6 tan a ) = 3 6 3 16 ( 1 + tan 2 a ) ( 2 1 + tan 2 a 1 1 3 tan 2 a ) = 3 6 ( 1 ) \begin{aligned} \left[ ADE \right] & =\frac{1}{3}\cdot \frac{\sqrt{3}}{4} \\ \frac{1}{2}DE\cdot AH & =\frac{\sqrt{3}}{12} \\ \left( DH+HE \right)\cdot AH & =\frac{\sqrt{3}}{6} \\ \left( x\tan \left( \frac{\pi }{6}+a \right)+x\tan \left( \frac{\pi }{6}-a \right) \right)\cdot x & =\frac{\sqrt{3}}{6} \\ {{x}^{2}}\left( \frac{\tan \frac{\pi }{6}+\tan a}{1-\tan \frac{\pi }{6}\cdot \tan a}+\frac{\tan \frac{\pi }{6}-\tan a}{1+\tan \frac{\pi }{6}\cdot \tan a} \right) & =\frac{\sqrt{3}}{6} \\ \frac{3}{16}\left( 1+{{\tan }^{2}}a \right)\left( 2\cdot \frac{1+{{\tan }^{2}}a}{1-\frac{1}{3}\cdot {{\tan }^{2}}a} \right) & =\frac{\sqrt{3}}{6} \ \ \ \ \ (1)\\ \end{aligned} Setting y = tan 2 a y={{\tan }^{2}}a , ( 1 ) 3 16 ( 1 + y ) ( 2 1 + y 1 1 3 y ) = 3 6 \left( 1 \right)\Leftrightarrow \frac{3}{16}\left( 1+y \right)\left( 2\cdot \frac{1+y}{1-\frac{1}{3}y} \right)=\frac{\sqrt{3}}{6} which simplifies to 9 y 2 + 22 y 3 = 0 9{{y}^{2}}+22y-3=0 Since y > 0 y>0 we get y = 2 37 11 9 y=\dfrac{2\sqrt{37}-11}{9} Thus, tan a = 2 37 11 3 a = tan 1 ( 2 37 11 3 ) 0.3454360226 \tan a=\frac{\sqrt{2\sqrt{37}-11}}{3}\Rightarrow a={{\tan }^{-1}}\left( \frac{\sqrt{2\sqrt{37}-11}}{3} \right)\approx 0.3454360226 For the answer, 10 5 a = 34543 \left\lfloor {{10}^{5}}a \right\rfloor =\boxed{34543} .

Chew-Seong Cheong
Nov 22, 2020

First note that A F G \triangle AFG and F G H \triangle FGH are congruent. Then 3 ( A 1 + A 2 ) = A 3(A_1 + A_2) = A_\triangle , where A A_\triangle is the area of A B C \triangle ABC . Let the side length of the equilateral triangular paper be 2 2 . Then A = 2 2 sin 6 0 2 = 3 A_\triangle = \dfrac {2^2 \sin 60^\circ}2 = \sqrt 3 and A 1 + A 2 = 1 3 A_1 + A_2 = \dfrac 1{\sqrt 3} .

Since A B = B C = C A = 2 AB=BC=CA=2 , A D = 3 AD=\sqrt 3 . Let A E = a AE = a , then E H = A E = a EH=AE=a and E D = 3 a ED = \sqrt 3 -a . Let D E H = θ \angle DEH = \theta . Then A E G = 1 2 A E H = 9 0 θ 2 \angle AEG = \dfrac 12 \angle AEH = 90^\circ - \dfrac \theta 2 . Since A E G = 9 0 α \angle AEG = 90^\circ - \alpha also, then θ = 2 α \theta = 2\alpha and cos 2 α = E D E H = 3 a a \cos 2\alpha = \dfrac {ED}{EH} = \dfrac {\sqrt 3 -a}a .

Note that A G E = 6 0 + α \angle AGE = 60^\circ + \alpha and A F E = 6 0 α \angle AFE = 60^\circ - \alpha . By sine rule , E F sin 3 0 = a sin ( 6 0 α ) \dfrac {EF}{\sin 30^\circ} = \dfrac a{\sin (60^\circ-\alpha)} and E G sin 3 0 = a sin ( 6 0 + α ) \dfrac {EG}{\sin 30^\circ} = \dfrac a{\sin (60^\circ+\alpha)} . And the area [ F G H ] = [ A F G ] [FGH]=[AFG] is given by:

[ A F G ] = A I F G 2 A 1 + A 2 = a cos α 2 ( E F + E G ) 1 3 = a 2 cos α 4 ( 1 sin ( 6 0 α ) + 1 sin ( 6 0 + α ) ) As cos 2 α = 3 a a = 3 ( sin ( 6 0 + α ) + sin ( 6 0 α ) ) 16 cos 3 α sin ( 6 0 + α ) sin ( 6 0 α ) 8 cos 3 α ( cos 2 α cos 12 0 ) = 9 cos α 4 ( cos 2 α + 1 ) ( cos 2 α + 1 2 ) = 9 2 ( cos 2 α + 1 ) ( 2 cos 2 α + 1 ) = 9 4 cos 2 2 α + 6 cos 2 α 7 = 0 cos 2 α = 37 3 4 α 0.345436023 1 0 5 α = 34543 \begin{aligned} [AFG] & = \frac {AI \cdot FG}2 \\ A_1 + A_2 & = \frac {a \cos \alpha}2 \cdot (EF+EG) \\ \frac 1{\sqrt 3} & = \frac {a^2 \cos \alpha}4 \left(\frac 1{\sin (60^\circ - \alpha)} + \frac 1{\sin (60^\circ + \alpha)} \right) & \small \blue{\text{As }\cos 2\alpha = \frac {\sqrt 3 -a}a} \\ & = \frac {3(\sin(60^\circ + \alpha) + \sin (60^\circ - \alpha))}{16 \cos^3 \alpha\sin(60^\circ + \alpha)\sin (60^\circ - \alpha)} \\ 8 \cos^3 \alpha (\cos 2\alpha - \cos 120^\circ) & = 9\cos \alpha \\ 4(\cos 2 \alpha + 1) \left(\cos 2\alpha + \frac 12 \right) & = 9 \\ 2(\cos 2\alpha+1)(2\cos 2\alpha + 1) & = 9 \\ 4\cos^2 2\alpha + 6 \cos 2 \alpha - 7 & = 0 \\ \implies \cos 2 \alpha & = \frac {\sqrt{37}-3}4 \\ \alpha & \approx 0.345436023 \\ \implies \lfloor 10^5 \alpha \rfloor & = \boxed{34543} \end{aligned}

David Vreken
Nov 20, 2020

Let the sides of the equilateral triangle be 1 1 and label the diagram as follows:

From the area of the equilateral triangle, A 1 + A 2 + 2 A 3 = 1 2 1 1 sin 60 ° = 3 4 A_1 + A_2 + 2A_3 = \cfrac{1}{2} \cdot 1 \cdot 1 \cdot \sin 60° = \cfrac{\sqrt{3}}{4} , and from the given information, A 1 + A 2 = A 3 A_1 + A_2 = A_3 . Combining these equations gives A 3 = 3 12 A_3 = \cfrac{\sqrt{3}}{12} .

Also,

A 1 = 1 2 x ( 1 y ) sin 60 ° = 3 4 x ( 1 y ) A_1 = \cfrac{1}{2} \cdot x \cdot (1 - y) \cdot \sin 60° = \cfrac{\sqrt{3}}{4}x(1 - y)

A 2 = 1 2 ( 1 x ) ( 1 z ) sin 60 ° = 3 4 x ( 1 x ) ( 1 z ) A_2 = \cfrac{1}{2} \cdot (1 - x) \cdot (1 - z) \cdot \sin 60° = \cfrac{\sqrt{3}}{4}x(1 - x)(1 - z)

A 3 = 1 2 y z sin 60 ° = 3 4 y z = 3 12 A_3 = \cfrac{1}{2} \cdot y \cdot z \cdot \sin 60° = \cfrac{\sqrt{3}}{4}yz = \cfrac{\sqrt{3}}{12}

Since A 1 + A 2 = A 3 A_1 + A_2 = A_3 , 3 4 x ( 1 y ) + 3 4 x ( 1 x ) ( 1 z ) = 3 4 y z = 3 12 \cfrac{\sqrt{3}}{4}x(1 - y) + \cfrac{\sqrt{3}}{4}x(1 - x)(1 - z) = \cfrac{\sqrt{3}}{4}yz = \cfrac{\sqrt{3}}{12} , or after simplifying,

3 x ( 1 y ) + 3 ( 1 x ) ( 1 z ) = 1 3x(1 - y) + 3(1 - x)(1 - z) = 1

3 y z = 1 3yz = 1

By the law of sines on A 1 A_1 , sin θ 1 y = sin 60 ° y \cfrac{\sin \theta}{1 -y} = \cfrac{\sin 60°}{y} , and if s = sin θ s = \sin \theta , this simplifies to:

2 s y = 3 ( 1 y ) 2sy = \sqrt{3}(1 - y)

By the law of sines on A 2 A_2 , sin ( 120 ° θ ) 1 z = sin 60 ° z \cfrac{\sin (120° - \theta)}{1 -z} = \cfrac{\sin 60°}{z} , and since sin ( 120 ° θ ) = sin 120 ° cos θ cos 120 ° sin θ = 1 2 ( 3 cos θ + sin θ ) = 1 2 ( 3 ( 1 sin 2 θ ) + sin θ ) \sin (120° - \theta) = \sin 120° \cos \theta - \cos 120° \sin \theta = \frac{1}{2}(\sqrt{3} \cos \theta + \sin \theta) = \frac{1}{2}(\sqrt{3(1 - \sin^2 \theta)} + \sin \theta) , if s = sin θ s = \sin \theta this simplifies to:

z 3 ( 1 s 2 ) + s z = ( 1 z ) 3 z\sqrt{3(1 - s^2)} + sz = (1 - z)\sqrt{3}

The four equations solve numerically to s 0.348833 s \approx 0.348833 , x 0.811652 x \approx 0.811652 , y 0.712861 y \approx 0.712861 , and z 0.467599 z \approx 0.467599 .

Now applying some trigonometry to P Q R \triangle PQR that is labeled below:

By the law of cosines, Q R = P Q 2 + P R 2 2 P Q P R cos 60 ° 1 2 + 0.81165 2 2 2 1 0.811652 1 2 0.920395 QR = \sqrt{PQ^2 + PR^2 - 2 \cdot PQ \cdot PR \cdot \cos 60°} \approx \sqrt{1^2 + 0.811652^2 - 2 \cdot 1 \cdot 0.811652 \cdot \frac{1}{2}} \approx 0.920395 .

And also by the law of cosines, P R = P Q 2 + Q R 2 2 P Q Q R cos Q PR = \sqrt{PQ^2 + QR^2 - 2 \cdot PQ \cdot QR \cdot \cos \angle Q} , or 0.811652 1 2 + 0.92039 5 2 2 1 0.920395 cos ( 30 ° + α ) 0.811652 \approx \sqrt{1^2 + 0.920395^2 - 2 \cdot 1 \cdot 0.920395 \cdot \cos (30° + \alpha)} , which solves to α 0.345436 \alpha \approx 0.345436 .

Therefore, 1 0 5 α = 1 0 5 0.345436 = 34543 \lfloor 10^5 \alpha \rfloor = \lfloor 10^5 \cdot 0.345436 \rfloor = \boxed{34543} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...