Origami Logic Part 1

Geometry Level 2

Stated in the picture is how to divide a paper into equal pieces. What is the ratio of the length BE to length EC? Key in your answers in the form:

L e n g t h B C L e n g t h E C = a n s w e r ( r o u n d e d o f f t o t h e n e a r e s t w h o l e n u m b e r ) \frac { Length\quad BC }{ Length\quad EC } =\quad answer\quad (rounded\quad off\quad to\quad the\quad nearest\quad whole\quad number)


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julian Poon
May 17, 2014

Consider this image: https://docs.google.com/document/d/1CVOOfHrMjD81taOO6fp_f-Y3AdEeIZfCzv4cEVtYEuw/edit

W e c a n f i n d θ 1 a n d θ 2 t a n θ 1 = x 2 x = 0.5 θ 1 = t a n 1 0.5 θ 2 = 180 45 θ 1 = 135 t a n 1 0.5 U s i n g t h e S i n e R u l e , w e c a n f i n d y 2 S i n e r u l e : 2 x s i n θ 2 = y s i n θ 1 y = 2 x s i n θ 1 s i n θ 2 W e c a n f i n d y 2 t o o , u s i n g P y t h a g o r a s t h e o r e m . y 1 = 8 x 2 S o , i f y o u t r y : y 1 y 2 = 3 We\quad can\quad find\quad { θ }_{ 1 }\quad and\quad { θ }_{ 2 }\\ \\ tanθ_{ 1 }=\frac { x }{ 2x } =0.5\\ θ_{ 1 }=tan^{ -1 }0.5\\ θ_{ 2 }=180-45-θ_{ 1 }=135-{ tan }^{ -1 }0.5\\ Using\quad the\quad Sine\quad Rule,\quad we\quad can\quad find\quad y_{ 2 }\\ \\ Sine\quad rule:\\ \\ \frac { 2x }{ sinθ_{ 2 } } =\frac { y }{ sinθ_{ 1 } } \\ y=\frac { 2xsinθ_{ 1 } }{ sinθ_{ 2 } } \\ \\ We\quad can\quad find\quad y_{ 2 }\quad too,\quad using\quad Pythagoras\quad theorem.\\ \\ y_{ 1 }=\sqrt { 8{ x }^{ 2 } } \\ \\ So,\quad if\quad you\quad try:\\ \\ \frac { y_{ 1 } }{ y_{ 2 } } =\quad 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...