Orthocenter Locus

Geometry Level 3

An ellipse is centered at the origin, and has a horizontal semi-major axis of length 1 1 and a vertical semi-minor axis of length 1 2 \dfrac{1}{2} . We now inscribe a triangle A B C \triangle ABC in this ellipse as follows. A A is fixed at ( 1 , 0 ) (-1, 0) , B B is fixed at ( 1 , 0 ) (1, 0) , and C C moves freely on the circumference of the ellipse. The orthocenter of A B C \triangle ABC traces a closed curve. Find the area enclosed by this curve. If the area can be expressed as x π x \pi , where x x is a positive real, enter x x as your answer.


The answer is 2.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Here is a solution based on dot product.

Let x 2 a 2 + y 2 b 2 = 1 \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 be the ellipse in the general case. Then, A = ( a , 0 ) A=\left( -a,0 \right) , B = ( a , 0 ) B=\left( a,0 \right) . Let C = ( x 0 , y 0 ) C=\left( {{x}_{0}},{{y}_{0}} \right) . Denote by P P the orthocenter.

Since P C PC is perpendicular to the x x -axis, P P and C C have the same x x -coordinate, i.e. P = ( x 0 , t ) P=\left( {{x}_{0}},t \right) . Now, P P is the orthocenter iff

A C B P A C B P = 0 ( x 0 + a , y 0 ) ( x 0 a , t ) = 0 ( x 0 + a ) ( x 0 a ) + y 0 t = 0 y 0 t = a 2 x 0 2 \begin{aligned} \overrightarrow{AC}\bot \overrightarrow{BP} & \Leftrightarrow \overrightarrow{AC}\cdot \overrightarrow{BP}=0 \\ & \Leftrightarrow \left( {{x}_{0}}+a,{{y}_{0}} \right)\cdot \left( {{x}_{0}}-a,t \right)=0 \\ & \Leftrightarrow \left( {{x}_{0}}+a \right)\left( {{x}_{0}}-a \right)+{{y}_{0}}t=0 \\ & {{y}_{0}}t={{a}^{2}}-{{x}_{0}}^{2} \\ \end{aligned} Since x 0 ± a {{x}_{0}}\ne \pm a , we get t 0 t\ne 0 , thus, y 0 = a 2 x 0 2 t {{y}_{0}}=\frac{{{a}^{2}}-{{x}_{0}}^{2}}{t} Point C C belongs to the ellipse, hence

x 0 2 a 2 + y 0 2 b 2 = 1 x 0 2 a 2 + ( a 2 x 0 2 t ) 2 b 2 = 1 ( a 2 x 0 2 ) 2 b 2 t 2 = a 2 x 0 2 a 2 a 2 x 0 2 b 2 = t 2 a 2 x 0 2 a 2 + t 2 ( a 2 b ) 2 = 1 \begin{aligned} \frac{{{x}_{0}}^{2}}{{{a}^{2}}}+\frac{{{y}_{0}}^{2}}{{{b}^{2}}}=1 & \Leftrightarrow \frac{{{x}_{0}}^{2}}{{{a}^{2}}}+\frac{{{\left( \frac{{{a}^{2}}-{{x}_{0}}^{2}}{t} \right)}^{2}}}{{{b}^{2}}}=1 \\ & \Leftrightarrow \frac{{{\left( {{a}^{2}}-{{x}_{0}}^{2} \right)}^{2}}}{{{b}^{2}}{{t}^{2}}}=\frac{{{a}^{2}}-{{x}_{0}}^{2}}{{{a}^{2}}} \\ & \Leftrightarrow \frac{{{a}^{2}}-{{x}_{0}}^{2}}{{{b}^{2}}}=\frac{{{t}^{2}}}{{{a}^{2}}} \\ & \Leftrightarrow \frac{{{x}_{0}}^{2}}{{{a}^{2}}}+\frac{{{t}^{2}}}{{{\left( \frac{{{a}^{2}}}{b} \right)}^{2}}}=1 \\ \end{aligned} This means that the locus is the ellipse with equation x 2 a 2 + y 2 ( a 2 b ) 2 = 1 \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{\left( \frac{{{a}^{2}}}{b} \right)}^{2}}}=1 , with the exception of its co-vertices, which are points A A and B B . Its semi-major and semi-minor axes are a = a 2 b a n d b = a {a}'=\dfrac{{{a}^{2}}}{b} \ \ \ \ \ and \ \ \ \ \ {b}'=a respectively.

Thus, the area in question is A = a b π = a 3 b π A={a}'{b}'\pi =\dfrac{{{a}^{3}}}{b}\pi Taking a = 1 a=1 and b = 1 2 b=\dfrac{1}{2} we find x = 2 x=\boxed{2} .

Hosam Hajjir
May 7, 2021

We'll do the solution for a general ellipse having a horizontal semi-major axis of a a and vertical semi-minor axis of b b . Then point A = ( a , 0 ) , B = ( a , 0 ) A = (-a, 0) , B = (a, 0) and C = ( a cos t , b sin t ) C = ( a \cos t, b \sin t ) where t t is arbitrary.

Drop a vertical perpendicular from C C to A B AB , then its equation is x = a cos t x = a \cos t

Next drop a perpendicular from A A to B C BC :

B C BC normal is the perpendicular vector to ( a a cos t , b sin t ) ( a - a \cos t, - b \sin t ) , so the normal is ( b sin t , a a cos t ) (b \sin t, a - a \cos t )

the parametric equation of the perpendicular line is p ( s ) = ( a , 0 ) + s ( b sin t , a a cos t ) = ( a + s b sin t , s a ( 1 cos t ) ) p(s) = (-a, 0) + s (b \sin t, a - a \cos t ) = (-a + s b \sin t , s a (1 - \cos t ) )

since x = a cos t x = a \cos t , then a + s b sin t = a cos t -a + s b \sin t = a \cos t

hence s = a ( cos t + 1 ) b sin t s = \dfrac{ a (\cos t + 1)} {b \sin t}

substituting this value of s s in the equation of the perpendicular line results in,

y = a 2 ( 1 + cos t ) ( 1 cos t ) b sin t = a 2 ( 1 cos 2 t ) b sin t = a 2 b sin t y = a^2 \dfrac{(1 + \cos t )(1 - \cos t )}{b \sin t } = \dfrac{a^2 (1 - \cos^2 t)}{b \sin t } = \dfrac{ a^2 }{b} \sin t

Hence the orthocenter at t t is ( a cos t , a 2 b sin t ) ( a \cos t , \dfrac{a^2}{b} \sin t ) and this parametric equation is for an ellipse with a horizontal semi-minor axis of length a a and a vertical semi-major axis of length a 2 b \dfrac{a^2}{b} , and a has an enclosed area of a 3 b π \dfrac{a^3}{b} \pi .

Plugging in a = 1 , b = 1 2 a = 1 , b = \dfrac{1}{2} , yields an area of 2 π 2 \pi , thus x = 2 x= \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...