Orthogonal Circles

Calculus Level 5

C 1 : x 2 + y 2 = r 2 , C 2 : ( x p ) 2 + ( y q ) 2 = r 2 C_{1}: x^{2}+y^{2}=r^{2}, \quad C_{2}: (x-p)^{2}+(y-q)^{2}=r^{2}

C 1 C_{1} and C 2 C_{2} defined above are two circles in 2D space with radius r ( > 0 ) r\, (> 0) and have n n points of intersection, ( x i , y i ) (x_{i},y_{i}) for i { 1 , , n } i \in \{1,\ldots,n\} .

If C 1 C_{1} and C 2 C_{2} are perpendicular at all points of intersection, which of the following statements are true?

I. x i 2 + y i 2 q y i p x i = 0 x_{i}^{2}+y_{i}^{2}-qy_{i}-px_{i}=0 .
II. As we move the center of C 2 C_{2} along the curve q = a q=a for some constant a 0 a \neq 0 , d r d p = p r \frac{dr}{dp}=\frac{p}{r} .
III. As we move the center of C 2 C_{2} along p + b q = 0 p+bq=0 for some constant b 0 b \neq 0 , d r d q = b 2 q + q 2 r \frac{dr}{dq}=\frac{b^{2}q+q}{2r} .

I only II only III only I, II only I, III only II, III only I, II, III

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brandon Monsen
Jan 26, 2017

We know that for intersection points, C 1 = C 2 C_{1}=C_{2} , and so

( x p ) 2 + ( y q ) 2 = x 2 + y 2 = r 2 { p 2 + q 2 = 2 p x + 2 q y x 2 + y 2 = r 2 } ( 1 ) \begin{array}{c}\\ (x-p)^{2}+(y-q)^{2}=x^{2}+y^{2}=r^{2} \Rightarrow \{ p^{2}+q^{2}=2px+2qy \: | \: x^{2}+y^{2}=r^{2} \} \quad (1) \end{array} .

For the circles to intersect orthogonally, d y d x C 1 = d x d y C 2 \frac{dy}{dx} \mid_{C_{1}} = -\frac{dx}{dy} \mid_{C_{2}} , so

C 1 : 2 x + 2 y d y d x = 0 d y d x = x y C 2 : 2 x 2 p + ( 2 y 2 q ) d y d x = 0 d y d x = x p y q \begin{array}{c}\\ C_{1}: \quad 2x+2y \frac{dy}{dx}=0 \Rightarrow \frac{dy}{dx}=-\frac{x}{y} \\ C_{2}: \quad 2x-2p+ \left(2y-2q \right) \frac{dy}{dx}=0 \Rightarrow \frac{dy}{dx}=-\frac{x-p}{y-q} \end{array}

And

C 1 C 2 y 2 q y + x 2 p x = 0 ( 2 ) . \begin{array}{c}\\ C_{1} \perp C_{2} \Rightarrow y^{2}-qy+x^{2}-px=0 \quad (2). \end{array}

Since this will be happening at the intersection points of C 1 C_{1} and C 2 C_{2} , x = x i x=x_{i} , y = y i y=y_{i} and so condition I is true .

We can now combine ( 1 ) (1) and ( 2 ) (2) and remove the x , y x,y parameters, getting

p 2 + q 2 = 2 r 2 ( 3 ) p^{2}+q^{2}=2r^{2} \: \: \: \: (3) .

The other two options can be checked from ( 3 ) (3) :

q = a 2 p + 0 = 4 r d r d p d r d p = p 2 r \begin{array}{c}\\ q=a \Rightarrow 2p+0=4r\frac{dr}{dp} \Rightarrow \frac{dr}{dp}=\frac{p}{2r} \end{array} and so II is false .

p + b q = 0 2 ( b 2 + 1 ) q = 4 r d r d q d r d q = b 2 q + q 2 r \begin{array}{c}\\ p+bq=0 \Rightarrow 2\left( b^{2}+1 \right) q=4r \frac{dr}{dq} \Rightarrow \frac{dr}{dq}=\frac{ b^{2}q+q}{2r} \end{array} and so III is true .

This is all of the options checked, so I, III \boxed{\text{I, III}} are true.

wow, nice :)

Rohith M.Athreya - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...