Up and down, up and down

Calculus Level 5

If a sequence oscillates, i.e. if its elements change signs, its sum can have weird behavior. Consider the following two oscillating sequences starting with k = 2 k=2 : { a k = 1 2 , 1 2 , 1 4 , 1 4 , 1 4 , 1 4 , 1 8 , 1 8 , 1 8 , 1 8 , 1 8 , 1 8 , 1 8 , 1 8 b k = 1 2 , 1 2 , 1 8 , 1 8 , 1 8 , 1 8 , 1 24 , 1 24 , 1 24 , 1 24 , 1 24 , 1 24 , 1 24 , 1 24 \begin{cases} a_k&=\frac{1}{2},\red{-\frac{1}{2}},\frac{1}{4},\frac{1}{4},\red{-\frac{1}{4}},\red{-\frac{1}{4}}, \ \frac{1}{8}, \ \frac{1}{8}, \ \frac{1}{8},\ \frac{1}{8},\ \ \red{-\frac{1}{8}},\ \ \red{-\frac{1}{8}},\ \ \red{-\frac{1}{8}},\ \red{-\frac{1}{8}} \ldots\\ b_k&=\frac{1}{2},\red{-\frac{1}{2}},\frac{1}{8},\frac{1}{8},\red{-\frac{1}{8}},\red{-\frac{1}{8}},\frac{1}{24},\frac{1}{24},\frac{1}{24},\frac{1}{24},\red{-\frac{1}{24}},\red{-\frac{1}{24}},\red{-\frac{1}{24}},\red{-\frac{1}{24}} \ldots \end{cases} Question: Do their series k = 2 a k \displaystyle \sum_{k=2}^\infty a_k and k = 2 b k \displaystyle \sum_{k=2}^\infty b_k converge?


Note: Both sequences are formally defined by N = n = 0 { 2 n ; ; 2 n + 1 1 } = : { 1 } n = 1 I n , I n = { 2 n ; ; 2 n + 2 n 1 1 } { 2 n + 2 n 1 ; ; 2 n + 1 1 } = : I n , 0 I n , 1 , n 1 a k = ( 1 ) l 2 n , b k = ( 1 ) l n 2 n , 2 k I n , l \begin{aligned} \mathbb{N}&=\bigcup_{n=0}^\infty \{2^n;\:\ldots;\:2^{n+1}-1\}=:\{1\}\cup\bigcup_{n=1}^\infty I_n,\\ I_n&=\{2^n;\:\ldots;\:2^n+2^{n-1}-1\}\cup\red{\{2^n+2^{n-1};\:\ldots;\:2^{n+1}-1\}}=:I_{n,0}\cup\red{I_{n,1}},\quad n\geq 1\\ a_k&=\frac{(-1)^l}{2^n},\quad b_k=\frac{(-1)^l}{n2^n},\qquad 2\leq k\in I_{n,l} \end{aligned}

Neither series converge Only k = 2 b k \sum_{k=2}^\infty b_k converges Both series converge Only k = 2 a k \sum_{k=2}^\infty a_k converges

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Carsten Meyer
Sep 22, 2019

Observations

  • Black terms belong to the indices k I n , 0 k\in I_{n,0} and red terms belong to the indices k I n , 1 \red{k\in I_{n,1}} . Both sets contain 2 n 1 2^{n-1} indices
  • Consecutive black and red terms cancel each other out: k I n a k = k I n b k = 0 \displaystyle\sum_{k\in I_n}a_k=\sum_{k\in I_n}b_k=0 for all n 1 n\geq 1
  • k I n , l a k = ( 1 ) l 2 , k I n , l b k = ( 1 ) l 2 n \displaystyle\sum_{k\in I_{n,l}}a_k=\frac{(-1)^l}{2},\qquad \sum_{k\in I_{n,l}}b_k=\frac{(-1)^l}{2n}

Proof: (last statement only) k I n , l a k = ( 1 ) l 2 n 2 n 1 = ( 1 ) l 2 , k I n , l b k = ( 1 ) l n 2 n 2 n 1 = ( 1 ) l 2 n \begin{aligned} \sum_{k\in I_{n,l}}a_k&=\frac{(-1)^l}{2^n}\cdot 2^{n-1}=\frac{(-1)^l}{2},&&&&\sum_{k\in I_{n,l}}b_k&=\frac{(-1)^l}{n2^n}\cdot 2^{n-1}=\frac{(-1)^l}{2n} \end{aligned}


Convergence

Let A N : = k = 2 N a k , B N : = k = 2 n b k A_N:=\sum_{k=2}^Na_k,\:B_N:=\sum_{k=2}^n b_k . Check A N A_N first: N = 2 m 1 : A N = k = 2 N a k = n = 1 m 1 k I n a k = 0 N = 2 m + 2 m 1 1 : A N = k = 2 N a k = n = 1 m 1 k I n a k + k I m , 0 a k = 1 2 \begin{aligned} N&=2^{m}-1:&&&A_N&=\sum_{k=2}^Na_k=\sum_{n=1}^{m-1}\cancel{\sum_{k\in I_{n}}a_k}=0\\ N&=2^{m}+2^{m-1}-1:&&&A_N&=\sum_{k=2}^Na_k=\sum_{n=1}^{m-1}\cancel{\sum_{k\in I_{n}}a_k}+\sum_{k\in I_{m,0}}a_k=\frac{1}{2} \end{aligned}

The sequence A N A_N has two subsecquences A 2 m 1 = 0 , A 2 m + 2 m 1 1 = 1 2 A_{2^m-1}=0,\:A_{2^m+2^{m-1}-1}=\frac{1}{2} with different limits - it cannot converge!

Let's tackle the other series with the Squeeze Theorem , take any N I m N\in I_m and calculate an upper estimate using the triangle inequality (*): 0 B N = k = 2 N b k = n = 1 m k I n b k + k = 2 m N b k ( ) k = 2 m N b k k I m b k = 1 m 2 m 2 m = 1 m 0 for m \begin{aligned} 0\leq |B_N|=\left|\sum_{k=2}^Nb_k\right |=\left|\sum_{n=1}^m\cancel{\sum_{k\in I_n}b_k}+\sum_{k=2^m}^Nb_k\right|\underset{(*)}{\leq}\sum_{k=2^m}^N|b_k|\leq\sum_{k\in I_m}|b_k|=\frac{1}{m2^m}\cdot 2^m=\frac{1}{m}\rightarrow0&&\text{for}&&m\rightarrow\infty \end{aligned}

Using the Squeeze Theorem, lim N B N = 0 \lim_{N\rightarrow\infty}|B_N|=0 . It follows that lim N B N = 0 \lim_{N\rightarrow\infty} B_N=0 .

We proved k = 2 a k diverges, k = 2 b k converges \boxed{\sum_{k=2}^\infty a_k\text{ diverges,}\qquad\sum_{k=2}^\infty b_k\text{ converges}}


Notes and common mistakes

  • One might be tempted to argue "All terms cancel out, then the sum must be zero" . However, that argument is only true if we sum up the first 2 n 2^n elements - if we sum up to any point between two such borders, the sum might still take on any value!
  • Checking only the sum of the first 2 n 2^n elements is the same as looking at only one subsequence of the sum. That is not enough to prove convergence!
  • For both sequences, all standard convergence tests fail or are inconclusive. In particular, we cannot apply the alternating series test because a k , b k a_k,\:b_k do not change sign every term! We must check directly if A N , B N A_N,\:B_N converge.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...