Osmotic pressure

Chemistry Level 2

A chemist dissolves 2.00 grams of protein in 0.100 liters of water. The osmotic pressure is 0.042 atm at 298 K. What is the approximate molar mass of the protein?

1 , 150 g mol 1 1,150\text{ g mol}^{-1} 4 , 600 g mol 1 4,600\text{ g mol}^{-1} 11 , 500 g mol 1 11,500\text{ g mol}^{-1} 23 , 000 g mol 1 23,000\text{ g mol}^{-1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pranjal Jain
Oct 31, 2014

π = C R T π = n V R T π = M M 0 V R T \pi=CRT\Rightarrow \pi=\frac{n}{V}RT\Rightarrow \pi=\frac{M}{M_{0}V}RT Substituting values with some approximations, M 0 = 11500 g m o l 1 M_{0}=11500 g\ mol^{-1}

Symbols Used:

  1. π \pi =Osmotic Pressure
  2. C =Concentration (Molarity)
  3. R =Gas constant (0.0821 L a t m K 1 L\ atmK^{-1} )
  4. T =Temperature
  5. n =moles
  6. V =Volume
  7. M =Given mass
  8. M 0 M_{0} =Molar Mass

Not writing down the units to save time.

(0.042)=(298)(0.08206)(((2.00)/(MM))/(0.100))

from where we get

MM = 11644.7
Lu Chee Ket
Feb 16, 2016

http://www.chemteam.info/Solutions/WS-Osmosis-AP.html

π = i M R T \pi = i~M~R~T where i 1 i \approx 1

0.042 \approx 1 × \times M × \times 0.08206 × \times 298

M \approx 1.7175 × 1 0 3 m o l / L 2 g 0.1 L ÷ 11500 g / m o l 1.7391 × 1 0 3 m o l / L \times 10^{-3} mol/ L \approx \frac{2 g}{0.1 L} \div 11500 g/ mol \approx 1.7391 \times 10^{-3} mol/ L

i = 1.7175 1.7391 0.9876 \frac{1.7175}{1.7391} \approx 0.9876

Note: 2 g 0.1 L \frac{2 g}{0.1 L} is also an approximation.

Answer: 11 , 500 g m o l 1 \boxed{11,500~g~mol^{-1}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...