Again the same?

For this exercise you can use Wolfram Alpha

What is the smallest natural number n n such that the last 7 digits of 7 n 7^n are equal to the last 7 digits of 7 7 7 7 7 7 7 \large 7^{7^{7^{7^{7^{7^{7}}}}}} ?


The answer is 22343.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Mar 6, 2018

Note that 7 2 1 ( m o d 16 ) 7^2 \equiv 1 \pmod{16} , which means that 7 2 n 1 ( m o d 2 n + 3 ) 7^{2^n} \equiv 1 \pmod{2^{n+3}} for all integers n 1 n \ge 1 . Similarly 7 4 1 ( m o d 25 ) 7^4 \equiv 1 \pmod{25} , and hence 7 4 × 5 n 1 ( m o d 5 n + 2 ) 7^{4 \times 5^n} \equiv 1 \pmod{5^{n+2}} for all n 0 n \ge 0 . We certainly deduce that 7 1 0 n 1 ( m o d 1 0 n + 2 ) 7^{10^n} \equiv 1 \pmod{10^{n+2}} for all n 2 n\ge 2 . We also note that 7 20 1 ( m o d 1000 ) 7^{20} \equiv 1 \pmod{1000} .

Letting ( n ) 7 {}^{(n)}7 denote that level n n tetration of 7 7 , we see that ( 2 ) 7 = 7 7 3 ( m o d 20 ) {}^{(2)}7 = 7^7 \equiv 3 \pmod{20} , and hence ( 3 ) 7 7 3 343 ( m o d 1000 ) {}^{(3)}7 \equiv 7^3 \equiv 343 \pmod{1000} . Thus ( 3 ) 7 43 ( m o d 1 0 2 ) ( 4 ) 7 7 43 2343 ( m o d 1 0 4 ) ( 4 ) 7 343 ( m o d 1 0 3 ) ( 5 ) 7 7 343 72343 ( m o d 1 0 5 ) ( 5 ) 7 2343 ( m o d 1 0 4 ) ( 6 ) 7 7 2343 172343 ( m o d 1 0 6 ) ( 6 ) 7 72343 ( m o d 1 0 5 ) ( 7 ) 7 7 72343 ( m o d 1 0 7 ) \begin{array}{rclcrcl} {}^{(3)}7 & \equiv & 43 \pmod{10^2} & \Rightarrow & {}^{(4)}7 & \equiv & 7^{43} \equiv 2343 \pmod{10^4} \\ {}^{(4)}7 & \equiv & 343 \pmod{10^3} & \Rightarrow & {}^{(5)}7 & \equiv & 7^{343} \equiv 72343 \pmod{10^5} \\ {}^{(5)}7 & \equiv & 2343 \pmod{10^4} & \Rightarrow & {}^{(6)}7 & \equiv & 7^{2343} \equiv 172343 \pmod{10^6} \\ {}^{(6)}7 & \equiv & 72343 \pmod{10^5} & \Rightarrow & {}^{(7)}7 & \equiv & 7^{72343} \pmod{10^7} \end{array} While we have used the fact that 7 1 0 5 1 ( m o d 1 0 7 ) 7^{10^5} \equiv 1 \pmod{10^7} , the results in the first paragraph show that 7 50000 1 ( m o d 1 0 7 ) 7^{50000} \equiv 1 \pmod{10^7} , and hence ( 7 ) 7 7 22343 ( m o d 1 0 7 ) {}^{(7)}7 \equiv 7^{22343} \pmod{10^7} In fact 50000 50000 is the order of 7 7 modulo 1 0 7 10^7 , and so the desired answer is 22343 \boxed{22343} .

The first and the only one person who has got right this answer. Nice!

Guillermo Templado - 3 years, 3 months ago

@Mark Hennings good solution

Anand Badgujar - 3 years ago

Can you explain how you got the modular equation in second line. How does it follow from the fact that 7^2=1mod16.

Srikanth Tupurani - 2 years, 7 months ago

Log in to reply

Prove it by induction on n n .

Mark Hennings - 2 years, 7 months ago

How do you prove that 50000 is the order of 7 modulo 10^7?

Vilim Lendvaj - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...