Out of control

Calculus Level 3

f ( x ) = ( x 1 ) 2 + ( x 2 ) 2 + ( x 3 ) 2 + + ( x 1 0 1 0 100 + 1 ) 2 + ( x 1 0 1 0 100 ) 2 f(x) = (x-1)^2+(x-2)^2+(x-3)^2+\cdots+\left(x-10^{10^{100}}+1\right)^2+\left(x-10^{10^{100}}\right)^2

Calculate the minimum value of the function above.

Hint: Use Desmos.com to graph it.


Inspiration .

1 12 ( 1 0 3 1 0 100 + 1 0 1 0 100 ) \dfrac{1}{12}\left(10^{3\cdot10^{100}}+10^{10^{100}}\right) 1 12 ( 1 0 2 1 0 100 1 ) \dfrac{1}{12}\left(10^{2\cdot 10^{100}}-1\right) 1 12 ( 1 0 3 1 0 100 1 0 1 0 100 ) \dfrac{1}{12}\left(10^{3\cdot10^{100}}-10^{10^{100}}\right) 1 0 3 1 0 100 12 \dfrac{10^{3\cdot 10^{100}}}{12} None of the others

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anirudh Sreekumar
Mar 19, 2017

f ( x ) = ( x 1 ) 2 + ( x 2 ) 2 + ( x 3 ) 2 + + ( x 1 0 1 0 100 + 1 ) 2 + ( x 1 0 1 0 100 ) 2 f(x) = (x-1)^2+(x-2)^2+(x-3)^2+\cdots+\left(x-10^{10^{100}}+1\right)^2+\left(x-10^{10^{100}}\right)^2

minima ocuurs at a a if f ( a ) = 0 f'(a)=0 and f ( a ) > 0 f''(a)>0

f ( x ) = 2 ( x 1 ) + 2 ( x 2 ) + 2 ( x 3 ) + + 2 ( x 1 0 1 0 100 + 1 ) + 2 ( x 1 0 1 0 100 ) f'(x)=2(x-1)+2(x-2)+2(x-3)+\cdots+2\left(x-10^{10^{100}}+1\right)+2\left(x-10^{10^{100}}\right)

f ( x ) = 2 + 2 + 2 + + 2 + 2 > 0 1 0 1 0 100 t i m e s \begin{aligned} f''(x)=\underbrace{2+2+2+\cdots+2+2}>0\\{10^{10^{100}} times}\end{aligned}

now f ( x ) = 0 f'(x)=0 impiles,

f ( x ) = 2 ( x 1 ) + 2 ( x 2 ) + 2 ( x 3 ) + + 2 ( x 1 0 1 0 100 + 1 ) + 2 ( x 1 0 1 0 100 ) = 0 ( x 1 ) + ( x 2 ) + ( x 3 ) + + ( x 1 0 1 0 100 + 1 ) + ( x 1 0 1 0 100 ) = 0 1 0 1 0 100 x n = 1 1 0 1 0 100 n = 0 1 0 1 0 100 x = 1 0 1 0 100 ( 1 0 1 0 100 + 1 ) 2 x = ( 1 0 1 0 100 + 1 ) 2 \begin{aligned}f'(x)&=2(x-1)+2(x-2)+2(x-3)+\cdots+2\left(x-10^{10^{100}}+1\right)+2\left(x-10^{10^{100}}\right)=0\\&\Rightarrow(x-1)+(x-2)+(x-3)+\cdots+\left(x-10^{10^{100}}+1\right)+\left(x-10^{10^{100}}\right)=0\\&\Rightarrow10^{10^{100}}x-\sum_{n=1}^{10^{10^{100}}}n=0\\&\Rightarrow10^{10^{100}}x=\dfrac{10^{10^{100}} \left(10^{10^{100}}+1\right)}{2}\\&\Rightarrow x=\dfrac{ \left(10^{10^{100}}+1\right)}{2}\end{aligned}

let, ( 1 0 1 0 100 + 1 ) = p \left(10^{10^{100}}+1\right)=p ( p \hspace{5mm} (p is odd)

mimima occurs at x = p 2 x=\dfrac{p}{2}

f ( p 2 ) = ( p 2 1 ) 2 + ( p 2 2 ) 2 + ( p 2 3 ) 2 + + ( p 2 ( p 2 ) ) 2 + ( p 2 ( p 1 ) ) 2 = 1 4 × ( ( p 2 ) 2 + ( p 4 ) 2 + ( p 6 ) 2 + + ( p 2 ( p 2 ) ) 2 + ( p 2 ( p 1 ) ) 2 ) = 1 4 × 2 ( 1 2 + 3 2 + 5 2 + + ( p 4 ) 2 + ( p 2 ) 2 ) = 1 2 × n = 1 p 1 2 ( 2 n 1 ) 2 \begin{aligned}f(\dfrac{p}{2}) &= (\dfrac{p}{2}-1)^2+(\dfrac{p}{2}-2)^2+(\dfrac{p}{2}-3)^2+\cdots+\left(\dfrac{p}{2}-(p-2)\right)^2+\left(\dfrac{p}{2}-(p-1)\right)^2\\&=\dfrac{1}{4} \times\left((p-2)^2+(p-4)^2+(p-6)^2+\cdots+(p-2(p-2))^2+(p-2(p-1))^2\right)\\&=\dfrac{1}{4}\times 2(1^2+3^2+5^2+\cdots+(p-4)^2+(p-2)^2)\\&=\dfrac{1}{2}\times \sum_{n=1}^{\tfrac{p-1}{2}} (2n-1)^2\end{aligned}

we have,

n = 1 x ( 2 n 1 ) 2 = x ( 4 x 2 1 ) 3 f ( p 2 ) = 1 2 × p 1 2 ( 4 × ( p 1 2 ) 2 1 ) 3 = 1 12 × 1 0 1 0 100 × ( ( 1 0 1 0 100 ) 2 1 ) = 1 12 × ( ( 1 0 1 0 100 ) 3 1 0 1 0 100 ) = 1 12 ( 1 0 3 1 0 100 1 0 1 0 100 ) \begin{aligned}\sum_{n=1}^x (2n-1)^2&=\dfrac{x(4x^2-1)}{3}\\\Rightarrow f(\dfrac{p}{2})&=\dfrac{1}{2}\times\dfrac{\dfrac{p-1}{2}\left(4\times\left(\dfrac{p-1}{2}\right)^2-1\right)}{3}\\&=\dfrac{1}{12}\times 10^{10^{100}}\times\left(\left(10^{10^{100}}\right)^2-1\right)\\&=\dfrac{1}{12}\times \left(\left(10^{10^{100}}\right)^3-10^{10^{100}}\right)\\&=\dfrac{1}{12}\left(10^{3\cdot10^{100}}-10^{10^{100}}\right)\end{aligned}

The solution would be much clearer and shorter if you evaluated it as a quadratic polynomial directly.

Calvin Lin Staff - 4 years, 2 months ago

Log in to reply

I did the same as @Anirudh Sreekumar what is it that you are asking us to try sir??

Anirudh Chandramouli - 4 years, 2 months ago

Log in to reply

No. I'm saying simplify it into a quadratic polynomial:

f ( x ) = ( 1 ) x 2 2 ( i ) x + i 2 . f(x) = (\sum 1)x^2 - 2 (\sum i) x + \sum i^2 .

Hence, we know that the minimum occurs at x = [ 2 ( i ) ] 2 ( 1 ) x^* = \frac{ - [ - 2 ( \sum i ) ] } { 2 ( \sum 1 ) } , and has value f ( x ) f(x^*) .

IMO, keeping the full form of f ( x ) f(x) becomes a huge distractor in this problem.

Calvin Lin Staff - 4 years, 2 months ago
Tapas Mazumdar
Mar 24, 2017

Let's generalize this. We have

g n ( x ) = k = 1 n ( x k ) 2 g_n (x) = \displaystyle \sum_{k=1}^n {(x-k)}^2

Now,

g n ( x ) = k = 1 n 2 ( x k ) = 0 x = n + 1 2 g'_n (x) = \displaystyle \sum_{k=1}^n 2(x-k) = 0 \implies x = \dfrac{n+1}{2}

Since g n ( x ) g_n (x) has no upper bound, so x = n + 1 2 x = \dfrac{n+1}{2} is the point of minima.

Thus

min g n ( x ) = k = 1 n ( n + 1 2 k ) 2 = n ( n 2 1 ) 12 \min g_n (x) = \displaystyle \sum_{k=1}^n {\left(\dfrac{n+1}{2}-k \right)}^2 = \dfrac{n (n^2-1)}{12}

We want to find f ( x ) = g 1 0 1 0 100 ( x ) f(x) = g_{10^{10^{100}}} (x) , so we have

min f ( x ) = 1 0 1 0 100 ( 1 0 2 1 0 100 1 ) 12 = 1 12 ( 1 0 3 1 0 100 1 0 1 0 100 ) \min f(x) = \dfrac{10^{10^{100}} \left( 10^{2 \cdot 10^{100}} - 1 \right)}{12} = \dfrac{1}{12}\left(10^{3\cdot10^{100}}-10^{10^{100}}\right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...