Overpowered x x 's - 2

Algebra Level 3

Given that x + 1 x = 1 x+\dfrac { 1 }{ x } =1 , find the value of x 128 + 1 x 128 x^{ 128 }+\dfrac { 1 }{ x^{ 128 } } .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alex G
Apr 11, 2016

Note that ( x + 1 x ) 2 = x 2 + 1 x 2 + 2 \large {(x + \frac {1} {x})} ^ {2} = x^2 + \frac {1} {x^2} +2 .

If x + 1 x = 1 \large x+ \frac {1} {x} = 1 then the equation x 2 n + ( 1 x ) 2 n = 1 \large {x} ^ {{2} ^ {n}}+{(\frac {1} {x})} ^ {{2} ^ {n}}= -1 is valid for all integer n 1 n \geq 1 .

1 \boxed {-1}

simplest solution at all !!!

Sarith Imaduwage - 5 years, 2 months ago
Tom Engelsman
Aug 15, 2017

Solving for x yields:

x + 1 x = 1 x 2 x + 1 = 0 x = 1 ± 1 4 ( 1 ) ( 1 ) 2 = 1 ± i 3 2 = e ± i π 3 . x + \frac{1}{x} = 1 \Rightarrow x^2 - x + 1 = 0 \Rightarrow x = \frac{1 \pm \sqrt{1 - 4(1)(1)}}{2} = \frac{1 \pm i \sqrt{3}}{2} = e^{\pm i \frac{\pi}{3}}.

Substituting these roots into the latter power expression gives:

e i 128 π 3 + e i 128 π 3 = 2 c o s ( 128 π 3 ) = 2 ( 1 2 ) = 1 . e^{i \frac{128\pi}{3}} + e^{-i \frac{128\pi}{3}} = 2cos(\frac{128\pi}{3}) = 2(-\frac{1}{2}) = \boxed{-1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...