Overpowered x x 's - 3

Algebra Level 3

Given that x + 1 x = 0 x+\dfrac { 1 }{ x } =0 , find the value of x 128 + 1 x 128 x^{ 128 }+\dfrac { 1 }{ x^{ 128 } } .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Apr 14, 2016

x + 1 x = 0 x 2 + 1 = 0 x = ± i x 128 + 1 x 128 = ( ± i ) 4 × 32 + 1 ( ± i ) 4 × 32 = 1 32 + 1 1 32 = 2 \begin{aligned} x +\frac {1} {x} & =0 \\ x^2 +1&=0 \\ \Rightarrow x&= \pm i \\ \Rightarrow x^{128} + \frac{1} {x^{128}} & = (\pm i)^{4 \times 32} + \frac {1} {(\pm i)^{4 \times 32} } \\ & = 1^{32} + \frac {1} {1 ^{32}} = \boxed {2} \end{aligned}

Sam Bealing
Apr 14, 2016

Relevant wiki: Newton's Identities

Let a n = x n + 1 x n a_n=x^n+\frac{1}{x^n} . The question gives us a 1 = 0 a_1=0 .

a 1 a n + 1 = 0 = ( x + 1 x ) ( x n + 1 + 1 x n + 1 ) = x n + 2 + 1 x n + 2 + x n + 1 x n = a n + 2 + a n a_1 a_{n+1}=0=(x+\frac{1}{x})(x^{n+1}+\frac{1}{x^{n+1}})=x^{n+2}+\frac{1}{x^{n+2}}+x^{n}+\frac{1}{x^{n}}=a_{n+2} +a_n .

So a n + 2 + a n = 0 a n + 2 = a n a n + 4 = a n + 2 = ( a n ) = a n a_{n+2}+a_n=0 \Rightarrow a_{n+2}=- a_n \Rightarrow a_{n+4}=-a_{n+2}=-(-a_n)=a_n .

a 2 = x 2 + 1 x 2 = ( x + 1 x ) 2 2 = a 1 2 = 2 a_2=x^2+\frac{1}{x^2}=(x+\frac{1}{x})^2 -2=a_1 -2=-2 so a 4 = ( 2 ) = 2 a_4=-(-2)=2 .

We can extend the result a n + 4 = a n a n + 8 = a n + 4 = a n . . . a_{n+4}=a_n \Rightarrow a_{n+8}=a_{n+4}=a_n ... to a n + 4 k = a n a_{n+4k}=a_n for an integer k k by induction.

This gives a 128 = a 4 + 4 × 31 = a 4 = 2 a_{128}=a_{4+4 \times 31}=a_4=2

Moderator note:

Good observation. More generally, a n a_n satisfies the recurrence relation of a n + 2 = a 1 × a n + 1 a n a_{n+2} = a_1 \times a_{n+1} - a_n , which allows us to determine it's value.

Sarthak Sahoo
Jan 20, 2020

Assume x C x\in \mathbb C

x = c i s ( θ ) x=\mathrm{cis}(\theta)

x + 1 x = 0 x+\displaystyle\frac{1}{x}=0

2 cos ( θ ) = 0 \Rightarrow 2\cos(\theta)=0

θ = π 2 \Rightarrow \theta=\frac{\pi}{2}

Similarly

x 128 + 1 x 128 = 2 cos ( 128 θ ) x^{128}+\frac{1}{\displaystyle x^{128}}=2\cos(128 \theta)

2 cos ( 128 × π 2 ) = 2 cos ( 64 π ) \Rightarrow 2\cos(\displaystyle\frac{128 \times \pi}{2})=2\cos(64\pi) = 2 \displaystyle = \boxed{2}

Alex G
Apr 14, 2016

Note that ( x + 1 x ) 2 = x 2 + 1 x 2 + 2 \large {(x + \frac {1} {x})} ^ {2} = x^2 + \frac {1} {x^2} +2 .

If x + 1 x = 0 \large x+ \frac {1} {x} = 0 then the equation x 2 n + ( 1 x ) 2 n = 2 \large {x} ^ {{2} ^ {n}}+{(\frac {1} {x})} ^ {{2} ^ {n}}= 2 is valid for all integer n 2 n \geq 2 .

Proof:

Squaring both sides once gives x 2 + 1 x 2 = 2 x^2+ \frac {1} {x^2} = -2

Squaring again gives x 4 + 1 x 4 = 2 x^4+ \frac {1} {x^4} = 2 Note that from now on squaring will double the power of x, but not change the constant, as 2 2 2 = 2 2^2-2=2

This gives the desired formula.

Thanks to @Calvin Lin for feedback.

On a side note, I like these problems.

Can you explain why the equation is valid for all integers? What's the proof / logic?

Calvin Lin Staff - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...