The cubic
has a turning point, that is a minimum, when
precisely for
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
When a function y = f ( x ) has a minimum at x = a , then d x 2 d 2 y > 0 @ x = a
We apply the same logic to this problem.
f ′ ′ ( x ) = 6 k x − 2 ( k + 1 ) x
f ′ ′ ( 1 ) = 6 k − 2 k − 2 > 0 ⇒ k > 2 1