P P is for P P ascal

Algebra Level 3

Let S n S_n be a series of n n terms such that: S n = 1 R 2 n + 1 + 1 R 2 n 1 + 1 + 2 + 1 R 2 n 2 + + R n 1 R n + 2 + R n R n + 1 S_n= \frac{1}{R_{2n}}+\frac{1+1}{R_{2n-1}}+\frac{1+2+1}{R_{2n-2}}+\frac{\dots}{\dots}+\frac{R_{n-1}}{R_{n+2}}+\frac{R_n}{R_{n+1}} where R k R_k indicates the sum of the entires of the k t h k^{th} row of the Pascal's triangle.

Let the value of lim n S n = a b \lim\limits_{n \to \infty}S_n =\dfrac{a}{b} , where a a and b b are coprime integers. Find the value of a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 21, 2019

Note that S n S_n can be rewritten as:

S n = k = 1 n R k R 2 n + 1 k By binomial theorem: R m = k = 0 m 1 ( n 1 k ) = 2 m 1 = k = 1 n 2 k 1 2 2 n k Multiply up and down by 2 k + 1 = k = 1 n 2 2 k 2 2 n + 1 = 1 2 2 n + 1 k = 1 n 4 k Sum of a geometric progression = 1 2 ( 4 n ) ( 4 ( 4 n 1 ) 4 1 ) = 2 3 ( 1 1 4 n ) \begin{aligned} S_n & = \sum_{k=1}^n \frac {R_k}{R_{2n+1-k}} & \small \color{#3D99F6} \text{By binomial theorem: }R_m = \sum_{k=0}^{m-1} \binom {n-1}k = 2^{m-1} \\ & = \sum_{k=1}^n \frac {2^{k-1}}{2^{2n-k}} & \small \color{#3D99F6} \text{Multiply up and down by }2^{k+1} \\ & = \sum_{k=1}^n \frac {2^{2k}}{2^{2n+1}} \\ & = \frac 1{2^{2n+1}} \color{#3D99F6} \sum_{k=1}^n 4^k & \small \color{#3D99F6} \text{Sum of a geometric progression} \\ & = \frac 1{2(4^n)} \color{#3D99F6} \left(\frac {4(4^n-1)}{4-1} \right) \\ & = \frac 23 \left(1 - \frac 1{4^n} \right) \end{aligned}

lim n S n = 2 3 \displaystyle \implies \lim_{n \to \infty} S_n = \dfrac 23 and a + b = 2 + 3 = 5 a+b = 2+3 = \boxed 5 .


Reference: Binomial theorem

Mohd. Hamza
Mar 20, 2019

S n = 1 R 2 n + 1 + 1 R 2 n 1 + 1 + 2 + 1 R 2 n 2 + + R n 1 R n + 2 + R n R n + 1 S_n= \frac{1}{R_{2n}}+\frac{1+1}{R_{2n-1}}+\frac{1+2+1}{R_{2n-2}}+\frac{\dots}{\dots}+\frac{R_{n-1}}{R_{n+2}}+\frac{R_n}{R_{n+1}} S n = R n R n + 1 + R n 1 R n + 2 + + 1 + 2 + 1 R 2 n 2 + 1 + 1 R 2 n 1 + 1 R 2 n S_n= \frac{R_n}{R_{n+1}}+\frac{R_{n-1}}{R_{n+2}}+\frac{\dots}{\dots}+\frac{1+2+1}{R_{2n-2}}+\frac{1+1}{R_{2n-1}}+\frac{1}{R_{2n}} We know from the properties of Pascal's triangle that R k = 2 k 1 R_k=2^{k-1}

Therefore, S n = 2 n 1 2 n + 2 n 2 2 n + 1 + + 2 2 2 2 n 3 + 2 1 2 2 n 2 + 2 0 2 2 n 1 S_n= \frac{2^{n-1}}{2^{n}}+\frac{2^{n-2}}{2^{n+1}}+\frac{\dots}{\dots}+\frac{2^2}{2^{2n-3}}+\frac{2^1}{2^{2n-2}}+\frac{2^0}{2^{2n-1}} lim n S n = S = 1 2 + 1 2 3 + 1 2 5 + \lim\limits_{n \to \infty}S_n=S=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\dots ( 1 2 2 ) S = 1 2 3 + 1 2 5 + 1 2 7 + \Rightarrow (\frac{1}{2^2})S= \frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\dots ( 1 1 2 2 ) S = 1 2 \Rightarrow (1-\frac{1}{2^2})S= \frac{1}{2} S = lim n S n = 2 3 = a b \Rightarrow S=\lim\limits_{n \to \infty}S_n=\frac{2}{3} =\frac{a}{b} a + b = 2 + 3 = 5 \Rightarrow a+b=2+3=\boxed{5}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...