Let A be the area enclosed by the parabolas y = 4 x − x 2 and y = x 2 − x . Find 24A.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Well explained... I guess I need not explain the solution now...
Graphically, we clearly see that A = ( ∫ 0 2 . 5 ( 4 x − x 2 ) d x ) − ( ∫ 1 2 . 5 ( x 2 − x ) d x ) − ( ∫ 0 1 ( x 2 − x ) d x )
We then find A = 1 2 5 / 2 4 . Hence, 2 4 A = 1 2 5 / 2 4 ∗ 2 4 = 1 2 5
Problem Loading...
Note Loading...
Set Loading...
The Area region is shown in the above graph.
The modified equations of the graphs are: y = 4 x − x 2 i . e . , ( x − 2 ) 2 = − ( y − 4 ) a n d y = x 2 − x i . e . , ( x − 2 1 ) 2 = y + 4 1
R e q u i r e d A r e a , A = A r ( O A E M ) − A r ( D E M ) + A r ( O C D ) = 0 ∫ 2 5 ( 4 x − x 2 ) d x − 1 ∫ 2 5 ( x 2 − x ) d x − 0 ∫ 1 ( x 2 − x ) d x [ 2 x 2 − 3 x 3 ] 0 2 5 − [ 3 x 3 − 2 x 2 ] 1 2 5 − [ 3 x 3 − 2 x ] 0 1 = [ 2 ( 4 2 5 ) − 3 ( 2 5 ) 3 ] − [ 3 ( 2 5 ) 3 − 1 3 − 2 ( 2 5 ) 2 − 1 2 ] − [ 3 1 3 − 2 1 ] = 2 4 3 0 0 − 1 2 5 − 1 2 5 + 8 + 7 5 − 1 2 − 8 + 1 2 = 2 4 1 2 5 s q . u n i t s
⇒ 2 4 A = 2 4 ( 2 4 1 2 5 ) = 1 2 5 s q . u n i t s