Paneer Definite Masala 10

Calculus Level 5

I 1 = 0 π sinc ( x ) d x I 2 = 0 π / 2 sinc ( x ) sinc ( π 2 x ) d x \large I_1 =\int_0^\pi \text{sinc}(x) \, dx \qquad I_2 = \int_0^{\pi /2} \text{sinc}(x) \text{sinc} \left( \dfrac\pi2 - x\right) \, dx

I 1 I_1 and I 2 I_2 are two definite integrals as described above and I 1 I 2 = A π B C \dfrac{I_1}{I_2} = \dfrac {A\pi^B}C , where A A , B B and C C are positive integers, find A + B + C A+B+C .

Notation: sinc ( x ) = sin x x \text{sinc}(x) = \dfrac{\sin x}x denotes the sinc function .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Solution suggested @Aniket Sanghi .

I 1 = 0 π sin x x d x Using a b f ( a + b x ) d x = a b f ( x ) d x = 1 2 0 π sin x x + sin ( π x ) π x d x Note that sin ( π x ) = sin x = 1 2 0 π sin x x + sin x π x d x = 1 2 0 π π sin x x ( π x ) d x Let x = 2 u d x = 2 d u = 1 2 0 π 2 2 π sin ( 2 u ) 2 u ( π 2 u ) d u = π 2 0 π 2 2 sin u cos u u ( π 2 u ) d u = π 2 0 π 2 sin u sin ( π 2 u ) u ( π 2 u ) d u = π 2 I 2 I 1 I 2 = π 2 \begin{aligned} I_1 & = \int_0^\pi \frac {\sin x}x dx & \small {\color{#3D99F6}\text{Using }\int_a^b f(a+b-x) \ dx = \int_a^b f(x) \ dx} \\ & = \frac 12 \int_0^\pi \frac {\sin x}x + \frac {\sin (\pi - x)}{\pi - x} dx & \small {\color{#3D99F6}\text{Note that } \sin (\pi - x) = \sin x} \\ & = \frac 12 \int_0^\pi \frac {\sin x}x + \frac {\sin x}{\pi - x} dx \\ & = \frac 12 \int_0^\pi \frac {\pi \sin x}{x(\pi - x)} dx & \small {\color{#3D99F6}\text{Let } x= 2u \implies dx = 2 \ du} \\ & = \frac 12 \int_0^\frac \pi 2 \frac {2\pi \sin (2u)}{2u(\pi - 2u)} du \\ & = \frac \pi 2 \int_0^\frac \pi 2 \frac {2\sin u \cos u}{u(\pi - 2u)} du \\ & = \frac \pi 2 \int_0^\frac \pi 2 \frac {\sin u \sin \left(\frac \pi 2 - u \right)}{u \left(\frac \pi 2 - u \right)} du \\ & = \frac \pi 2 I_2 \\ \implies \frac {I_1}{I_2} & = \frac \pi 2 \end{aligned}

A + B + C = 1 + 1 + 2 = 4 \implies A + B + C = 1+1+2 = \boxed{4}

Yeah! Thanks sir , for changing my process to complete solution :) !! I actually was busy at that time .

Aniket Sanghi - 4 years, 7 months ago
Aniket Sanghi
Nov 9, 2016

Process :

  • First apply f ( a + b - x) = f (x) to I 1 {I}_{1} (where a and b are limits) and add the 2 terms.
  • Then substitute x = 2t.
  • And You will get the answer.

I 1 I 2 = π 2 \boxed {\frac {{I}_{1}}{{I}_{2}} = \frac { \pi }{2} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...