Integrate? Great!

Calculus Level 4

0 1 d x x 2 + 2 x cos α + 1 \large \int_0^1 \dfrac{dx}{x^2+2x\cos\alpha+1}

Let α \alpha be a constant real number such that the integral above can be expressed as a α b sin ( c α ) \dfrac{a\alpha}{b\sin(c\alpha)} , where a , b a,b and c c are positive integers with a a and b b being coprime . Find a + 2 b + 3 c a+2b+3c .


The answer is 8.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 23, 2016

\begin{aligned} I & = \int_0^1 \frac{1}{x^2+2x\cos \alpha +1} dx \\ & = \int_0^1 \frac{1}{x^2+2x\cos \alpha + \cos^2 \alpha +1 - \cos^2 \alpha} dx \\ & = \int_0^1 \frac{1}{(x +\cos \alpha)^2 + \sin^2\alpha } dx \\ & = \frac{1}{\sin^2 \alpha} \int_0^1 \frac{1}{\left( \color{#3D99F6} {\frac{x +\cos \alpha}{\sin \alpha}}\right)^2 + 1} dx \quad \quad \small \color{#3D99F6}{\text{Let }\tan \theta = \frac{x +\cos \alpha}{\sin \alpha} \implies \sec^2 \theta \ d\theta = \frac{dx}{\sin \alpha}} \\ & = \frac{\sin \alpha}{\sin^2 \alpha} \int_\color{#3D99F6}{\frac{\pi}{2} - \alpha}^\color{#3D99F6}{\frac{\pi}{2} - \frac{\alpha}{2}} \frac{\sec^2 \theta}{\sec^2 \theta} d\theta \quad \quad \small \color{#3D99F6}{\text{See Note.}} \\ & = \frac{1}{\sin \alpha} \int_{\frac{\pi}{2} - \alpha}^{\frac{\pi}{2} - \frac{\alpha}{2}} \ d\theta \\ & = \frac{1}{\sin \alpha} \left(\frac{\pi}{2}- \frac{\alpha}{2} - \frac{\pi}{2} + \alpha \right) \\ & = \frac{\alpha}{2\sin \alpha} \end{aligned}

a + 2 b + 3 c = 1 + 2 ( 2 ) + 3 ( 1 ) = 8 \implies a + 2b + 3c = 1 + 2(2) + 3(1) = \boxed{8}


Note: \color{#3D99F6}{\text{Note:}}

x = 1 tan θ = 1 + cos α sin α = 1 + 2 cos 2 α 2 1 2 sin α 2 cos α 2 = cot α 2 θ = π 2 α 2 x = 0 tan θ = 0 + cos α sin α = cot α θ = π 2 α \begin{aligned} x = 1 \implies \tan \theta & = \frac{1+\cos \alpha}{\sin \alpha} \\ & = \frac{1+2\cos^2 \frac{\alpha}{2}-1}{2\sin \frac{\alpha}{2}\cos \frac{\alpha}{2}} \\ & = \cot \frac{\alpha}{2} \\ \implies \theta & = \frac{\pi}{2} - \frac{\alpha}{2} \\ x = 0 \implies \tan \theta & = \frac{0+\cos \alpha}{\sin \alpha} \\ & = \cot \alpha \\ \implies \theta & = \frac{\pi}{2} - \alpha \end{aligned}

nice solution

Ashutosh Sharma - 3 years, 3 months ago
Kishore S. Shenoy
May 22, 2016

Let I = 0 1 1 x 2 + 2 x cos α + 1 d x I = \large \int_0^1 \dfrac1{x^2+2x\cos\alpha+1}\, dx

Now, cos 2 α + sin 2 α = 1 \cos^2\alpha+\sin^2\alpha = 1 . So, I = 0 1 1 x 2 + 2 x cos α + cos 2 α + sin 2 α d x = 0 1 1 ( x + cos α ) 2 + sin 2 α d x = 1 sin α arctan ( x + cos α sin α ) 0 1 d x ( x + a ) 2 + b 2 = 1 b arctan x + a b = 1 sin α ( arctan ( 1 + cos α sin α ) arctan ( cos α sin α ) ) = 1 sin α ( arctan ( cot α 2 ) arctan ( cot α ) ) = 1 sin α ( π 2 α 2 π 2 + α ) = α 2 sin α \large\begin{aligned}I &= \int_0^1 \dfrac1{x^2+2x\cos\alpha+\cos^2\alpha+\sin^2 \alpha}\,dx \\\large&= \int_0^1 \dfrac1{\left(x+\cos\alpha\right)^2+\sin^2 \alpha}\, dx \\ \large&= \dfrac 1{\sin\alpha}\arctan\left(\dfrac{x+\cos\alpha}{\sin\alpha}\right)_0^1\quad \small\color{#3D99F6}{\because\int\dfrac{dx}{(x+a)^2+b^2} = \dfrac1b\arctan\dfrac{x+a}b}\\ \large&=\dfrac1{\sin\alpha}\left(\arctan\left(\dfrac{1+\cos\alpha}{\sin\alpha}\right)-\arctan\left(\dfrac{\cos\alpha}{\sin\alpha}\right)\right)\\ \large&=\dfrac1{\sin\alpha}\left(\arctan\left(\cot \dfrac \alpha2\right)-\arctan\left( \cot \alpha\right)\right)\\ \large&=\dfrac1{\sin\alpha}\left(\dfrac\pi2-\dfrac\alpha2-\dfrac\pi2+\alpha\right)\\ \large&=\dfrac\alpha{2\sin\alpha}\end{aligned}

Moderator note:

Nice question, having the terms cancel out like that.

I think you should mention that a a and b b are coprime.

Log in to reply

Done. Thanks!

Kishore S. Shenoy - 5 years ago
Ashutosh Sharma
Feb 27, 2018

this one is jee style .assume alpha as pi/2 so now integraand turns into 1/(1+x^2).on integrating we get arctanx .substituting limits we get pi/4. now arrange according to given for so on numerator we have pi/2 and in denominator we have [2 times sin(pi/2)]on comparing the coefficient we have a=1 b=2 c=1

Hey! The question is put up to show some specific method for Integrals with Trigonometric Functions. Obviously, most questions have such tricks, which are nothing but the way the human brain thinks.

Kishore S. Shenoy - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...