Paneer Definite Masala 4

Calculus Level 5

π / 4 π / 4 2 π sin ( 2 π x ) 2 cos 2 x d x \large\int_{-\pi /4}^{\pi /4} \dfrac{2\pi - \sin (2\pi x) }{2 - \cos2x } \, dx

If the integral above is equal to A π B C D + E \dfrac{A\pi^B}{C\sqrt D} + E , where A , B , C , D A,B,C,D and E E are non-negative integers with A , C A,C coprime and D D square-free, find A + B + C + D + E A+B+C+D+E .


The answer is 12.0000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Neelesh Vij
Jun 8, 2016

Let I = π / 4 π / 4 2 π sin 2 π x 2 cos 2 x d x \displaystyle I = \int_{-\pi/4}^{\pi/4} \dfrac { 2\pi - \sin{2\pi x}}{2 - \cos{2x}} dx

Replacing x x by π / 4 + π / 4 x = x -\pi/4 + \pi/4 -x = -x we get:

I = π / 4 π / 4 2 π + sin 2 π x 2 cos 2 x d x \displaystyle I = \int_{-\pi/4}^{\pi/4} \dfrac { 2\pi + \sin{2\pi x}}{2 - \cos{2x}} dx

Adding both expressions:

2 I = π / 4 π / 4 4 π 2 cos 2 x d x \displaystyle 2I = \int_{-\pi/4}^{\pi/4} \dfrac { 4\pi}{2 - \cos{2x}} dx

I 4 π = 0 π / 4 1 2 cos 2 x d x \displaystyle \dfrac{I}{4\pi} = \int_{0}^{\pi/4} \dfrac {1}{2 - \cos{2x}} dx

Replacing 2 x 2x by x x

I 2 π = 0 π / 2 1 2 cos x d x \displaystyle \dfrac{I}{2\pi} = \int_{0}^{\pi/2} \dfrac {1}{2 - \cos{x}} dx

Now as cos x = 1 + tan 2 x 2 1 + tan 2 x 2 \displaystyle \cos{x} = \dfrac{1 + \tan^2{\dfrac x2} }{ 1 + \tan^2{\dfrac x2} } Putting in above expression and using 1 + tan 2 x 2 = sec 2 x 2 \displaystyle 1 + \tan^2{\dfrac x2} = \sec^2{\dfrac x2} we get

I 2 π = 0 π / 2 sec 2 x 2 1 + 3 tan 2 x 2 d x \displaystyle \dfrac{I}{2\pi} = \int_{0}^{\pi/2} \dfrac {\sec^2{\dfrac x2}}{1 + 3\tan^2{\dfrac x2}} dx

Now putting tan x 2 = y \tan{\dfrac x2} = y

I 4 π = 0 1 1 1 + 3 t 2 d t \displaystyle \dfrac{I}{4\pi} = \int_{0}^{1} \dfrac {1}{1 + 3t^2} dt

Integrating we get:

I = 4 π 2 3 3 \displaystyle I = \dfrac{4 \pi ^2 }{3 \sqrt{3}}

A = 4 , B = 2 , C = D = 3 , E = 0 A =4 , B=2 , C=D =3 ,E=0

A + B + C + D + E = 12 A+B+C+D+E = \boxed{12}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...