If the integral above can be expressed as , where and are positive integers, with and being coprime integers, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let, I = ∫ 0 π / 4 arctan ( 2 − sin 2 x 2 cos 2 x ) sec 2 x d x
Subtitute tan x = t , differentiating, sec 2 x d x = d t . So, I = ∫ 0 1 arctan ⎝ ⎜ ⎛ ( 1 + t 2 ) ( 2 − 1 + t 2 2 t ) 2 ⎠ ⎟ ⎞ d t = ∫ 0 1 arctan ( 1 + t 2 − t 1 ) d t = ∫ 0 1 arctan ( 1 − t ( 1 − t ) t + ( 1 − t ) ) d t
Now now, arctan x + arctan y = ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ arctan ( 1 − x y x + y ) π + arctan ( 1 − x y x + y ) for for x y < 1 x y > 1
But since t ( t − 1 ) < 1 for all real values for t , we can use the first case.
So, I = ∫ 0 1 arctan t + arctan ( 1 − t ) d t = 2 ∫ 0 1 arctan t d t = 2 ( t arctan t ) 0 1 − ∫ 0 1 1 + t 2 2 t d t = 2 π − ln 2