Paneer Definite Masala 9

Calculus Level 5

0 π / 4 arctan ( 2 cos 2 θ 2 sin 2 θ ) sec 2 θ d θ \large \int_0^{\pi /4} \arctan \left( \dfrac{2\cos^2 \theta}{2-\sin2\theta} \right) \sec^2 \theta \, d\theta

If the integral above can be expressed as A π B C D ln E \dfrac{A\pi^B}C - D \ln E , where A , B , C , D A,B,C,D and E E are positive integers, with A A and B B being coprime integers, find A + B + C + D + E A+B+C+D+E .


The answer is 7.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kishore S. Shenoy
May 24, 2016

Let, I = 0 π / 4 arctan ( 2 cos 2 x 2 sin 2 x ) sec 2 x d x \large I = \int_0^{\pi /4} \arctan \left( \dfrac{2\cos^2 x}{2-\sin2x} \right) \sec^2 x \, dx

Subtitute tan x = t \tan x = t , differentiating, sec 2 x d x = d t \sec^2 x \,dx =dt . So, I = 0 1 arctan ( 2 ( 1 + t 2 ) ( 2 2 t 1 + t 2 ) ) d t = 0 1 arctan ( 1 1 + t 2 t ) d t = 0 1 arctan ( t + ( 1 t ) 1 t ( 1 t ) ) d t \begin{aligned}I &= \int_0^1 \arctan\left(\dfrac{2}{(1+t^2)(2-\dfrac{2t}{1+t^2})}\right)dt\\ &= \int_0^1 \arctan\left(\dfrac{1}{1+t^2-t}\right)dt\\ &= \int_0^1 \arctan\left(\dfrac{t+(1-t)}{1-t(1-t)}\right)dt\end{aligned}

Now now, arctan x + arctan y = { arctan ( x + y 1 x y ) for x y < 1 π + arctan ( x + y 1 x y ) for x y > 1 \arctan x + \arctan y = \begin{cases}\arctan \left(\dfrac{x+y}{1-xy}\right) & \text{ for } &xy<1\\\pi+\arctan \left(\dfrac{x+y}{1-xy}\right) & \text{ for }& xy>1\end{cases}

But since t ( t 1 ) < 1 t(t-1) < 1 for all real values for t t , we can use the first case.

So, I = 0 1 arctan t + arctan ( 1 t ) d t = 2 0 1 arctan t d t = 2 ( t arctan t ) 0 1 0 1 2 t 1 + t 2 d t = π 2 ln 2 \begin{aligned}I &= \int_0^1 \arctan t + \arctan (1-t)\, dt\\ &=2\int_0^1 \arctan t\,dt\\ &=2\left(t\,\arctan t\right)_0^1 - \int_0^1 \dfrac{2t}{1+t^2}\, dt\\ &=\Large\boxed{\dfrac\pi2 - \ln 2}\end{aligned}

Moderator note:

Great question combining the many different approaches.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...