Parabolas and Common Tangents

Geometry Level 4

f ( x ) = a 1 x 2 + b 1 x + c 1 f(x) = a_{1}x^2 + b_{1}x + c_{1} goes thru the points ( 1 , 3 ) , ( 2 , 9 ) (1,3), (2,9) and ( 0 , 1 ) (0,1) and g ( x ) = a 2 x 2 + b 2 x + c 2 g(x) = a_{2}x^2 + b_{2}x + c_{2} goes thru the points ( 1 , 4 ) , ( 2 , 7 ) (1,4), (2,7) and ( 0 , 3 ) (0,3) . If f ( x ) f(x) and g ( x ) g(x) have common tangents at points A A and B B and points A A' and B B' as shown, find the area of the trapezoid A A B B A'ABB' .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 29, 2020

From f ( x ) = a 1 x 2 + b 1 x + c 1 { f ( 0 ) = c 1 = 1 . . . ( 0 ) f ( 1 ) = a 1 + b 1 + c 1 = a 1 + b 1 + 1 = 3 a 1 + b 1 = 2 . . . ( 1 ) f ( 2 ) = 4 a 1 + 2 b 1 + 1 = 9 2 a 1 + b 1 = 4 . . . ( 2 ) f(x) = a_1x^2 + b_1x + c_1 \implies \begin{cases} f(0) = c_1 = 1 & & ...(0) \\ f(1) = a_1 + b_1 + c_1 = a_1 + b_1 + 1 = 3 & \implies a_1+b_1 = 2 & ...(1) \\ f(2) = 4a_1 + 2 b_1 + 1 = 9 & \implies 2a_1+b_1 = 4 & ...(2) \end{cases}

( 2 ) ( 1 ) : a 1 = 2 , b 1 = 0 f ( x ) = 2 x 2 + 1 \implies (2)-(1): a_1 = 2, b_1 = 0 \implies f(x) = 2x^2 + 1

Similarly, { g ( 0 ) = c 2 = 3 . . . ( 0 ) g ( 1 ) = a 2 + b 2 = 1 . . . ( 1 ) g ( 2 ) = 4 a 2 + 2 b 2 = 4 2 a 2 + b 2 = 2 . . . ( 2 ) \begin{cases} g(0) = c_2 = 3 & & ...(0) \\ g(1) = a_2 + b_2 = 1 & & ...(1) \\ g(2) = 4a_2 + 2 b_2 = 4 & \implies 2a_2+b_2 = 2 & ...(2) \end{cases}

( 2 ) ( 1 ) : a 2 = 2 , b 2 = 0 g ( x ) = x 2 + 3 \implies (2)-(1): a_2 = 2, b_2 = 0 \implies g(x) = x^2 + 3

We note that for B ( x B , y B ) B(x_B, y_B) , y B = 3 y_B = 3 . Then f ( x B ) = x B 2 + 3 = 3 x B = 1 f(x_B) = x_B^2 + 3 = 3 \implies x_B = 1 . Therefore B ( 1 , 3 ) B(1,3) and B ( 1 , 3 ) B'(-1,3) . The gradient at point B B is f ( x B ) = 4 x B = 4 f'(x_B) = 4x_B = 4 . Then the gradient at A ( x A , y A A(x_A, y_A is also 4 4 . g ( x A ) = 2 x A = 4 x A = 2 \implies g'(x_A) = 2x_A = 4 \implies x_A = 2 and y A = g ( x A ) = x A 2 + 3 = 7 y_A = g(x_A) = x_A^2 + 3 = 7 . A ( 2 , 7 ) \implies A(2, 7) and A ( 2 , 7 ) A'(-2,7) .

Therefore, the area of trapezoid A A B B A'ABB' is A A + B B 2 × ( y A Y B ) = 2 + 4 2 × ( 7 3 ) = 12 \dfrac {A'A+B'B}2\times (y_A-Y_B) = \dfrac {2+4}2\times (7-3) = \boxed{12} .

Rocco Dalto
Jan 23, 2020

f ( 1 ) = a 1 + b 1 + c 1 = 3 f(1) = a_{1} + b_{1} + c_{1} = 3

f ( 2 ) = 4 a 1 = 2 b 1 + c 1 = 9 f(2) = 4a_{1} = 2b_{1} + c_{1} = 9

f ( 3 ) = c 1 = 1 f(3) = c_{1} = 1 \implies

a 1 + b 1 = 2 a_{1} + b_{1} = 2

2 a 1 + b 1 = 4 2a_{1} + b_{1} = 4

a 1 = 2 \implies a_{1} = 2 and b 1 = 0 b_{1} = 0

f ( x ) = 2 x 2 + 1 \implies \boxed{f(x) = 2x^2 + 1} .

g ( 1 ) = a 2 b 2 + c 2 = 4 g(1) = a_{2} b_{2} + c{2} = 4

g ( 2 ) = 4 a 2 + 2 b 2 + c 2 = 7 g(2) = 4a_{2} + 2b_{2} + c-{2} = 7

g ( 0 ) = c 2 = 3 g(0) = c_{2} = 3 \implies

a 2 + b 2 = 1 a_{2} + b_{2} = 1

2 a 2 + b 2 = 2 2a_{2} + b_{2} = 2

a 2 = 1 \implies a_{2} = 1 and b 2 = 0 b_{2} = 0

g ( x ) = x 2 + 3 \implies \boxed{g(x) = x^2 + 3}

f ( x 0 ) = 4 x 0 = 2 x 1 = g ( x 1 ) x 1 = 2 x 0 f'(x_{0}) = 4x_{0} = 2x_{1} = g'(x_{1}) \implies x_{1} = 2x_{0}

B : ( x 0 , 2 x 0 2 + 1 ) B : (x_{0},2x_{0}^2 + 1) and A : ( 2 x 0 , 4 x 0 2 + 3 ) A : (2x_{0},4x_{0}^2 + 3)

m A B = 2 x 0 2 + 2 x 0 = 4 x 0 4 x 0 2 = 2 x 0 2 + 2 \implies m_{AB} = \dfrac{2x_{0}^2 + 2}{x_{0}} = 4x_{0} \implies 4x_{0}^2 = 2x-{0}^2 + 2 \implies

x 0 = ± 1 x_{0} = \pm 1

x 0 = 1 B : ( 1 , 3 ) x_{0} = 1 \implies B : (1,3) and A : ( 2 , 7 ) A : (2,7)

and

x 0 = 1 B : ( 1 , 3 ) x_{0} = -1 \implies B' : (-1,3) and A : ( 2 , 7 ) A' : (-2,7)

A A = 4 , B B = 2 \implies A'A = 4, \:\ B'B = 2 and the height of h h of trapezoid A A B B A'ABB' is h = 4 h = 4

\implies The area of trapezoid A A B B A'ABB' is A A A B B = 1 2 ( 4 ) ( 2 + 4 ) = 12 A_{A'ABB'} = \dfrac{1}{2}(4)(2 + 4) = \boxed{12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...