Parabolic Wire Magnetics

Two parabolas carry current of I = 2 π A I=2\sqrt{π}A of equation y 2 = 4 ( x 1 ) y^{2}=4(x-1) y 2 = 4 ( x + 1 ) y^{2}=-4(x+1) Find the magnitude of magnetic force between the part A B AB and C D CD . Details and assumptions Take μ 0 = 1 \mu_{0}=1 (for simplicity)


The answer is 1.541.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Apr 13, 2020

Nice one. Simulation code is attached.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import math

# Scan resolution

N = 5000

######################################################

# Constants

u0 = 1.0
I1 = 2.0*math.sqrt(math.pi)
I2 = 2.0*math.sqrt(math.pi)

dy1 = 4.0/N
dy2 = 4.0/N

######################################################
######################################################

# Wire 1 is on the right (+x)
# Wire 2 is on the left (-x)

# For every point on wire 1, integrate over wire 2 to find the B field
# Then calculate the infinitesimal force contribution to wire 1
# Add up the infinitesimal force contributions

Fx = 0.0
Fy = 0.0
Fz = 0.0

y1 = -2.0

while y1 <= 2.0:

    x1 = 1.0 + (y1**2.0)/4.0
    z1 = 0.0

    dx1 = (y1/2.0)*dy1
    dz1 = 0.0

    Bx = 0.0
    By = 0.0
    Bz = 0.0

    y2 = -2.0

    while y2 <= 2.0:     # Determine B field at point on wire 1....
                                    # by integrating over wire 2
                                    # Biot Savart
        x2 = -1.0 - (y2**2.0)/4.0
        z2 = 0.0

        dx2 = -(y2/2.0)*dy2
        dz2 = 0.0

        rx = x1 - x2                 
        ry = y1 - y2
        rz = z1 - z2

        r = math.sqrt(rx**2.0 + ry**2.0 + rz**2.0)  

        Bcrossx = dy2*rz - dz2*ry      
        Bcrossy = -(dx2*rz - dz2*rx)
        Bcrossz = dx2*ry - dy2*rx

        dBx = (u0*I2/(4.0*math.pi))*Bcrossx/(r**3.0)  
        dBy = (u0*I2/(4.0*math.pi))*Bcrossy/(r**3.0)
        dBz = (u0*I2/(4.0*math.pi))*Bcrossz/(r**3.0)

        Bx = Bx + dBx
        By = By + dBy
        Bz = Bz + dBz

        y2 = y2 + dy2

    Fcrossx = dy1*Bz - dz1*By        # Add up infinitesimal forces on wire 1
    Fcrossy = -(dx1*Bz - dz1*Bx)     # dF = I*(dL x B)
    Fcrossz = dx1*By - dy1*Bx

    dFx = I1 * Fcrossx
    dFy = I1 * Fcrossy
    dFz = I1 * Fcrossz

    Fx = Fx + dFx            
    Fy = Fy + dFy
    Fz = Fz + dFz

    y1 = y1 + dy1

######################################################
######################################################

# Print results

print N
print ""
print Fx
print Fy
print Fz
print ""
F = math.sqrt(Fx**2.0 + Fy**2.0 + Fz**2.0)

print F

######################################################
######################################################

#>>> 
#1000

#-1.54151408185
#-0.00109164846106
#0.0

#1.54151446838
#>>> ================================ RESTART ================================
#>>> 
#2000

#-1.54151434668
#-0.000545824315127
#0.0

#1.54151444331
#>>> ================================ RESTART ================================
#>>> 
#5000

#-1.54177828841
#-4.95827066471e-14
#0.0

#1.54177828841
#>>> 

@Steven Chase Accurate Sir.

A Former Brilliant Member - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...