Parallel conductors

We have three infinite straight conductors carrying current as shown above. Let I n I_n be the current on the n th n^\text{th} conductor. Find the force per unit length F 3 l \frac{\vec{F_3}}{l} on conductor 3. If F 3 l = a b × 1 0 c N m θ \frac{\vec{F_3}}{l}=a\sqrt{b}\times 10^{-c} \frac{\text{N}}{\text{m}} \angle \theta , find a + b + c + θ a+b+c+\theta .

Details and assumptions

  • I 1 = 5 A I_1=5\text{ A} , I 2 = 10 A I_2=10\text{ A} , I 3 = 20 A I_3=20\text{ A}
  • a a , b b , c c and θ \theta are positive integers, b b is a square-free number, 1 a 9 1\leq a \leq 9 and 0 < θ < 36 0 0^\circ < \theta < 360^\circ .
  • × \times (a cross) means that the current goes inside the screen, and \cdot (a dot) means that the current goes outside the screen.
  • r = r θ \vec{r}=r\angle\theta is a vector with magnitude r r and angle θ \theta with respect to the positive x-axis.


The answer is 219.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let B a , b \vec{B_{a,b}} the magnetic field that conductor a a produces on point b b and let r a , b r_{a,b} the distance from conductor a a to point b b . We have:

B 1 , 3 = μ 0 I 1 2 π r 1 , 3 = ( 4 π × 1 0 7 N A 2 ) ( 5 A ) 2 π ( 0.1 m ) = 1 × 1 0 5 T B_{1,3}=\dfrac{\mu_0 I_1}{2 \pi r_{1,3}}=\dfrac{\left(4\pi \times 10^{-7}\frac{\text{N}}{\text{A}^2}\right)(5\text{ A})}{2\pi(0.1\text{ m})}=1\times 10^{-5}\text{ T}

B 2 , 3 = μ 0 I 2 2 π r 2 , 3 = ( 4 π × 1 0 7 N A 2 ) ( 10 A ) 2 π ( 0.1 m ) = 2 × 1 0 5 T B_{2,3}=\dfrac{\mu_0 I_2}{2 \pi r_{2,3}}=\dfrac{\left(4\pi \times 10^{-7}\frac{\text{N}}{\text{A}^2}\right)(10\text{ A})}{2\pi(0.1\text{ m})}=2\times 10^{-5}\text{ T}

To determine the directions we use the right hand rule as shown above. By simple geometry we get:

B 1 , 3 ^ = cos 3 0 i ^ + sin 3 0 j ^ = 3 2 i ^ + 1 2 j ^ \hat{B_{1,3}}=\cos 30^\circ \hat{i}+\sin 30^\circ \hat{j}=\dfrac{\sqrt{3}}{2}\hat{i}+\dfrac{1}{2}\hat{j}

B 2 , 3 ^ = cos 27 0 i ^ + sin 27 0 j ^ = j ^ \hat{B_{2,3}}=\cos 270^\circ \hat{i}+\sin 270^\circ \hat{j}=-\hat{j}

Then we find the total magnetic field on conductor 3:

B 3 = B 1 , 3 + B 2 , 3 = 1 × 1 0 5 T ( 3 2 i ^ + 1 2 j ^ ) + 2 × 1 0 5 T ( j ^ ) = 3 2 × 1 0 5 T i ^ 3 2 × 1 0 5 T j ^ \vec{B_3}=\vec{B_{1,3}}+\vec{B_{2,3}}=1\times 10^{-5}\text{ T}\left(\dfrac{\sqrt{3}}{2}\hat{i}+\dfrac{1}{2}\hat{j}\right)+2\times 10^{-5}\text{ T}(-\hat{j})=\dfrac{\sqrt{3}}{2}\times 10^{-5}\text{ T}\hat{i}-\dfrac{3}{2}\times 10^{-5}\text{ T}\hat{j}

Finally, we find the force per unit length on conductor 3, where l ^ \hat{l} is the direction of the current:

F 3 l = I 3 l ^ × B 3 = ( 20 A ) ( k ^ ) × ( 3 2 × 1 0 5 T i ^ 3 2 × 1 0 5 T j ^ ) = 3 × 1 0 4 N m i ^ 3 × 1 0 4 N m j ^ \dfrac{\vec{F_3}}{l}=I_3\hat{l}\times\vec{B_3}=(20\text{ A})(-\hat{k})\times\left(\dfrac{\sqrt{3}}{2}\times 10^{-5}\text{ T}\hat{i}-\dfrac{3}{2}\times 10^{-5}\text{ T}\hat{j}\right)=-3\times 10^{-4}\frac{\text{N}}{\text{m}}\hat{i}-\sqrt{3}\times 10^{-4}\frac{\text{N}}{\text{m}}\hat{j}

We convert to polar form to get the answer:

F 3 l = 2 3 × 1 0 4 N m 210 ° \dfrac{\vec{F_3}}{l}=2\sqrt{3}\times 10^{-4}\frac{\text{N}}{\text{m}}\angle 210°

Hence a = 2 , b = 3 , c = 4 , θ = 210 ° a=2,b=3,c=4,\theta=210° and a + b + c + θ = 219 a+b+c+\theta=\boxed{219} .

Did the same!! Just instead of vectors I used graph

Aniket Sanghi - 5 years, 2 months ago

Easiest level 5 problem in Magnetism I have come across till now.

Saarthak Marathe - 5 years, 1 month ago

Log in to reply

i think this problem should be level 3

Did the same!!!!

shivam mishra - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...