Parallelogram with extended side lengths

Geometry Level pending

A B C D ABCD is a parallelogram. Let C C' be a point on A C AC extended such that the length of A C = 1.2 A C AC'= 1.2 AC . Let D D' be on the segment B D BD such that the length of B D = 0.9 B D BD' = 0.9 BD . The ratio of the area of the quadrilateral A B C D ABC'D' to the area of the parallelogram A B C D ABCD can be written as a b \frac{a}{b} , where a a and b b are coprime positive integers. What is the value of a + b a+b ?


The answer is 52.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Calvin Lin Staff
May 13, 2014

First, we will show that the area of any convex quadrilateral is 1 2 x y sin θ \frac{1}{2}\cdot x \cdot y\cdot \sin \theta , where x x and y y are the lengths of the diagonal and θ \theta is the angle between them.

Let P Q R S PQRS be a convex quadrilateral. Let P R PR and Q S QS intersect at T T . Let [ P Q R S ] [PQRS] denote the area of P Q R S PQRS . Using the fact sin P T Q = sin Q T R = sin R T S = sin S T P \sin \angle PTQ = \sin \angle QTR = \sin \angle RTS = \sin \angle STP , we have

[ P Q R S ] = [ P Q T ] + [ Q R T ] + [ R S T ] + [ S P T ] = 1 2 P T T Q sin P T Q + 1 2 Q T T R sin Q T R + 1 2 R T T S sin R T S + 1 2 S T T P sin S T P = 1 2 Q T ( P T + T R ) sin P T Q + 1 2 T S ( R T + T P ) sin P T Q = 1 2 ( P T + T R ) ( Q T + T S ) sin P T Q = 1 2 P R Q S sin P T Q \begin{aligned} [PQRS] &= [PQT] + [QRT] + [RST] + [SPT] \\ &= \frac{1}{2} \cdot PT \cdot TQ \cdot \sin \angle PTQ + \frac{1}{2} \cdot QT \cdot TR \cdot \sin \angle QTR \\ &\ + \frac{1}{2} \cdot RT \cdot TS \cdot \sin \angle RTS + \frac{1}{2} \cdot ST \cdot TP \cdot \sin \angle STP \\ &= \frac{1}{2}\cdot QT \cdot (PT + TR)\cdot \sin \angle PTQ + \frac{1}{2} TS \cdot (RT + TP)\cdot \sin \angle PTQ \\ &= \frac{1}{2}\cdot (PT + TR)(QT + TS)\cdot \sin \angle PTQ \\ &= \frac{1}{2}\cdot PR \cdot QS\cdot \sin \angle PTQ \\ \end{aligned}

So, the area of parallelogram A B C D ABCD is 1 2 A C B D sin θ \frac{1}{2} \cdot AC \cdot BD \cdot \sin \theta , where θ \theta is the angle between the diagonals A C AC and B D BD .

Note that θ \theta is also the angle between the diagonals A C AC' and B D BD' . So, the area of the quadrilateral A B C D ABC'D' is 1 2 A C B D sin θ = 1 2 ( 1.2 A C ) ( 0.9 B D ) sin θ = 1.08 2 A C B D sin θ \frac{1}{2} \cdot AC' \cdot BD'\cdot \sin \theta = \frac{1}{2} \cdot (1.2 AC) \cdot (0.9 BD) \cdot \sin \theta = \frac{1.08}{2} \cdot AC \cdot BD\cdot \sin \theta .

Thus the ratio of the areas is 1.08 A C B D sin θ A C B D sin θ = 1.08 = 27 25 \frac{1.08 \cdot AC \cdot BD \sin \theta }{AC \cdot BD \sin \theta} = 1.08 = \frac{27}{25} . Hence a + b = 27 + 25 = 52 a + b = 27 + 25 = 52 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...