Parallels 'Parallel' to parallel

Geometry Level 3

In the above figure, A B C E F G AB || CE || FG , A B = 4.5 cm , F G = 9 cm , A C = 4 cm , C E = x cm AB = 4.5 \text{ cm}, FG = 9\text{ cm}, AC = 4\text{ cm}, CE = x\text{ cm}

Find the value of x x .

Bonus : Can you generalize for any 3 parallel lines, where the line joining the lines, intersecting at a point?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Aug 5, 2016

Method 1 :

In Δ AGB and Δ CGE A B G = C E G (Corresponding angles) A G B = C G E (Common angle) Δ A G B Δ C G E (By AA Similarity) G E G B = C E A B G E G B = z x ... (i) In Δ F B G , Δ C B E F G B = C E B (Corresponding angles) F B G = C B E (Common) Δ F B G Δ C B E B E B G = C E F G B E B G = z y ... (ii) ( i ) + ( i i ) z x + z y = G E G B + B E G B z ( 1 x + 1 y ) = G E + B E G B = G B G B z ( 1 x + 1 y ) = 1 1 x + 1 y = 1 z . . . ( i i i ) \text{In }\Delta\text{AGB and }\Delta\text{CGE} \\ \angle ABG = \angle CEG \text{ (Corresponding angles)} \\ \angle AGB = \angle CGE \text{ (Common angle)} \\ \implies \Delta AGB \sim \Delta CGE \text{ (By AA Similarity)} \\ \implies \dfrac{GE}{GB} = \dfrac{CE}{AB} \\ \implies \frac{GE}{GB} = \dfrac{z}{x} \text{ ... (i) }\\ \text{In }\Delta FBG, \Delta CBE \\ \angle FGB = \angle CEB \text{ (Corresponding angles)} \\ \angle FBG = \angle CBE \text{ (Common)} \\ \implies \Delta FBG \sim \Delta CBE \\ \implies \dfrac{BE}{BG} = \dfrac{CE}{FG} \\ \implies \dfrac{BE}{BG} = \frac{z}{y} \text{ ... (ii)}\\ (i) + (ii) \\ \implies \dfrac{z}{x} + \dfrac{z}{y} = \dfrac{GE}{GB} + \dfrac{BE}{GB} \\ \implies z (\dfrac{1}{x} + \dfrac{1}{y}) = \dfrac{GE + BE}{GB} = \dfrac{GB}{GB} \\ \implies z(\dfrac{1}{x} + \dfrac{1}{y}) = 1\\ \implies \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{z} ... (iii)

Method 2: From (iii) 1 x + 1 y = 1 z y + x x y = 1 z x y x + y = z . . . ( i v ) \text{From (iii)} \\ \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{z} \\ \implies \dfrac{y+x}{xy} = \dfrac{1}{z} \\ \implies \dfrac{xy}{x+y} = z ... (iv)

Substitute values of x, y as given in question in any of ( i i i ) (iii) or ( i v ) (iv) , You'll get:

In ( i i i ) (iii) :

1 4.5 + 1 9 = 1 z 10 45 + 1 9 = 1 z 10 + 5 45 = 1 z 15 45 = 1 z 1 3 = 1 z z = 3 \dfrac{1}{4.5} + \dfrac{1}{9} = \dfrac{1}{z} \\ \implies \dfrac{10}{45} + \dfrac{1}{9} = \dfrac{1}{z} \\ \implies \dfrac{10 + 5}{45} = \dfrac{1}{z} \\ \implies\dfrac{15}{45} = \dfrac{1}{z} \\ \implies \dfrac{1}{3} = \dfrac{1}{z} \\ \implies \fbox{z = 3}

In ( i v ) (iv) :

x y x + y = z 4.5 × 9 4.5 + 9 = z 40.5 13.5 = z 405 135 = z z = 3 \dfrac{xy}{x+y} = z\\ \implies \dfrac{4.5 \times 9}{4.5+ 9} = z \\ \implies \dfrac{40.5}{13.5} = z \\ \implies \dfrac{405}{135} = z \\ \implies \fbox{z = 3}

Well its 10th ncert question.

Chirayu Bhardwaj - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...