Parameter Derivation from Data Points

Two variables, x x and y y , are related in the following way:

y = α x β + σ e γ x \large{y = \alpha x^{\beta} + \sigma e^{-\gamma x}}

Parameters α , β , σ \alpha, \beta, \sigma , and γ \gamma are real numbers that lie within the range ( 0 , 3 ) (0,3) . The symbol e e denotes Euler's number .

The 10 ( x , y ) (x,y) pairs below correspond to a particular set of α , β , σ \alpha, \beta, \sigma , and γ \gamma . y y -coordinates are approximated to 6 decimal places.

Determine α + β + σ + γ \alpha + \beta + \sigma + \gamma (to 1 decimal place).

x y
1 2.745561
2 3.503581
3 4.218876
4 4.903586
5 5.554965
6 6.172822
7 6.759282
8 7.317432
9 7.850492
10 8.361436


The answer is 4.7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hasmik Garyaka
Oct 24, 2017
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import math
def approximation():
    table={1:2.745561,2:3.503581,3:4.218876,4:4.903586,5:5.554965,6:6.172822,7:6.759282,8:7.317432,9:7.850492,10:8.361436
}
    for a in range(0,30):
        alpha=a/10
        for b in range(0,30):
            beta=b/10
            for c in range(0,30):
                gamma=c/10
                for d in range(0,30):
                    delta=d/10
                    for x in range(1,11):
                        y=alpha*pow(x,beta)+delta*math.exp(-gamma*x)
                        if y<table[x]-0.01 or y>table[x]+0.01:
                            break
                    else:
                        print(alpha,beta,gamma,delta)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...