Parameter

Geometry Level pending

{ x = 4 α 1 + α 2 y = 2 2 α 2 1 + α 2 \begin{cases} x=\dfrac{4\alpha }{1+\alpha ^2} \\ y=\dfrac{2-2\alpha ^2}{1+\alpha ^2} \end{cases}

If reals x x and y y satisfy the system of equations above for real parameter α \alpha . Find the range x 2 x y + y 2 x^2-xy+y^2 lies within.

[2, 6] [4, 6] None of the others [2, 4]

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let α = tan θ \alpha = \tan \theta . Then we have:

{ x = 4 α 1 + α 2 = 2 ( 2 tan θ ) 1 + tan 2 θ = 2 sin 2 θ y = 2 2 α 2 1 + α 2 = 2 ( 1 tan 2 θ ) 1 + tan 2 θ = 2 cos 2 θ \begin{cases} x = \dfrac {4\alpha}{1+\alpha^2} = \dfrac {2(2\tan \theta)}{1+\tan^2 \theta} = 2 \sin 2\theta \\ y = \dfrac {2-2\alpha^2}{1+\alpha^2} = \dfrac {2(1-\tan^2 \theta)}{1+\tan^2 \theta} = 2 \cos 2\theta \end{cases} \quad by Weierstrass substitution or tangent half-angle substitution .

Therefore,

x 2 x y + y 2 = 4 sin 2 2 θ 4 sin 2 θ cos 2 θ + 4 cos 2 2 θ = 4 2 sin 4 θ \begin{aligned} x^2 - xy + y^2 & = 4\sin^2 2\theta - 4\sin 2\theta \cos 2\theta + 4\cos^2 2\theta \\ & = 4 - 2\sin 4\theta \end{aligned}

Since sin 4 θ [ 1 , 1 ] x 2 x y + y 2 [ 2 , 6 ] \sin 4\theta \in [-1, 1] \implies x^2 - xy + y^2 \in \boxed{[2,6]} .

Sahil, need not key in text in LaTex, it is difficult, does not look good and not the standard practice. The standard in Brilliant is to just key them as text. I have edited the problem for you.

Chew-Seong Cheong - 4 years, 8 months ago

Log in to reply

Thanks sir!

Sahil Silare - 4 years, 8 months ago

There's mistake in your step. You have written 4 cos 2 2 θ 4\cos ^22\theta as 4 cos 2 θ 4\cos ^2\theta

Sahil Silare - 4 years, 8 months ago

Log in to reply

Thanks, I have changed it.

Chew-Seong Cheong - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...