Parameterized Integration - Part 1

Calculus Level 4

Given that F ( x ) = 0 x ( t 2 x 2 ) f ( t ) d t F(x) = \displaystyle \int_{0}^{x} (t^2-x^2) f'(t) \, dt , find d F d x \displaystyle \dfrac{dF}{dx} .

0 0 2 x ( f ( x ) f ( 0 ) ) -2x(f(x)-f(0)) 2 x 2 f ( x ) 2x^2f'(x) x 2 f ( x ) 2 x ( f ( x ) f ( 0 ) ) x^2 f'(x) - 2x(f(x)-f(0))

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Dec 8, 2020

We have F ( x ) = 0 x t 2 f ( t ) d t x 2 0 x f ( t ) d t 0 d F d x = d d x ( 0 x t 2 f ( t ) d t ) d d x ( x 2 0 x f ( t ) d t ) \newcommand{\ddx}{\dfrac d{dx}} \begin{array} { r l } F(x) &= \displaystyle \int_0^x t^2 f'(t) \, dt - x^2 \int_0^x f'(t) \, dt \\ \phantom0 \\ \implies \dfrac{dF}{dx} &= \displaystyle \ddx \left( \int_0^x t^2 f'(t) \, dt \right) - \ddx \left( x^2 \int_0^x f'(t) \, dt \right) \end{array} Let us compute these two derivatives separately. Using fundamental theorem of calculus (Part 1) , we get d d x ( 0 x t 2 f ( t ) d t ) = x 2 f ( x ) \newcommand{\ddx}{\dfrac d{dx}} \ddx \left( \int_0^x t^2 f'(t) \, dt \right) = x^2 f'(x) And with FTC part 2 as well as chain rule , d d x ( x 2 0 x f ( x ) d t ) = x 2 d d x ( 0 x f ( t ) d t ) = f ( x ) + ( 0 x f ( t ) d t ) = f ( x ) f ( 0 ) d d x ( x 2 ) = 2 x = x 2 f ( x ) + 2 x [ f ( x ) f ( 0 ) ] \newcommand{\ddx} {\dfrac d{dx}} \ddx \left(x^2 \int_0^x f'(x) \, dt \right) = x^2 \cdot \underbrace{\ddx \left( \int_0^x f'(t) \, dt \right)}_{= f'(x)} + \underbrace{\left( \int_0^x f'(t) \, dt \right)}_{=\, f(x) - f(0) } \cdot \underbrace{\ddx (x^2) }_{=\, 2x} = x^2 f'(x) + 2x \, [ f(x) - f(0) \, ] Combining them together, we get d F d x = x 2 f ( x ) x 2 f ( x ) 0 2 x [ f ( x ) f ( 0 ) ] = 2 x ( f ( x ) f ( 0 ) ) . \dfrac{dF}{dx} = \cancelto{0}{ x^2 f'(x) - x^2 f'(x)} - 2x \, [ \, f(x) - f(0) \, ] = \boxed{ - 2x \, ( \, f(x) - f(0) \, ) }.

Mark Hennings
Dec 10, 2020

F ( x ) = 0 x ( x 2 t 2 ) f ( t ) d t = 0 x ( t x 2 s d s ) f ( t ) d t = 0 x 2 s ( 0 s f ( t ) d t ) d s = 2 0 x s ( f ( s ) f ( 0 ) ) d s F(x) \; = \; -\int_0^x (x^2-t^2)f'(t)\,dt \; = \; -\int_0^x \left(\int_t^x 2s\,ds\right)\,f'(t)\,dt \; = \; -\int_0^x 2s\left(\int_0^s f'(t)\,dt\right)\,ds \: = \; -2\int_0^x s(f(s)-f(0))\,ds and hence F ( x ) = 2 x ( f ( x ) f ( 0 ) ) F'(x) = \boxed{-2x(f(x)-f(0))} .

Good lord, this is beautiful. It has never crossed my mind to add more integral symbols.

Pi Han Goh - 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...