Parameterized Integration - Part 3

Calculus Level 3

Let function f ( x ) = 0 x e y 2 + 2 y d y f(x) = \displaystyle \int_{0}^{x} e^{-y^2+2y} \, dy , find A = 0 1 ( x 1 ) 2 f ( x ) d x A=\displaystyle \int_{0}^{1} (x-1)^2 f(x) \, dx .

Submit 10000 A \lfloor 10000A \rfloor .


The answer is 1197.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Dec 30, 2020

A = 0 1 ( x 1 ) 2 f ( x ) d x A = \int_{0}^{1} (x-1)^2 f(x) \ dx Integrating by parts:

A = ( x 1 ) 3 3 f ( x ) 0 1 1 3 0 1 ( x 1 ) 3 f ( x ) d x A = \frac{(x-1)^3}{3}f(x) \biggr \rvert_0^1 - \frac{1}{3}\int_{0}^{1} (x-1)^3f'(x) \ dx A = ( x 1 ) 3 3 ( 0 x e y 2 + 2 y d y ) 0 1 1 3 0 1 ( x 1 ) 3 e x 2 + 2 x d x A = \frac{(x-1)^3}{3} \left(\int_{0}^{x} \mathrm{e}^{-y^2+2y} \ dy\right) \biggr \rvert_0^1 - \frac{1}{3}\int_{0}^{1} (x-1)^3 \ \mathrm{e}^{-x^2+2x} \ dx

The above is obtained by substituting f ( x ) f(x) and applying the Leibnitz rule of differentiating an integral. Plugging in the limits of integration simplifies the integral to:

A = 0 e 3 0 1 ( x 1 ) 3 e ( x 1 ) 2 d x A = 0- \frac{\mathrm{e}}{3}\int_{0}^{1}(x-1)^3 \ \mathrm{e}^{-(x-1)^2} \ dx A = e 3 0 1 ( 1 x ) 3 e ( 1 x ) 2 d x A = \frac{\mathrm{e}}{3}\int_{0}^{1} (1-x)^3 \ \mathrm{e}^{-(1-x)^2} \ dx A = e 3 0 1 x 3 e x 2 d x A = \frac{\mathrm{e}}{3}\int_{0}^{1} x^3 \ \mathrm{e}^{-x^2} \ dx

0 a f ( x ) d x = 0 a f ( a x ) d x \because \int_{0}^{a} f(x) \ dx = \int_{0}^{a} f(a-x) \ dx

Taking x 2 = z x^2 = z transforms the integral to:

10000 A = 10000 e 6 0 1 z e z d z \implies 10000A = \frac{10000\mathrm{e}}{6}\int_{0}^{1} z \mathrm{e}^{-z} \ dz

Integrating by parts gives the required closed form solution. The answer is:

10000 A = 1197 \boxed{\lfloor 10000 A \rfloor = 1197}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...