Parametric Adventure

Calculus Level 3

Given that two variables x , y x,y which can be represented by the parameter t t satisfy:

{ d y d x = 2 t d 3 y d x 3 = t 3 \begin{cases} \cfrac{dy}{dx}=2t \\ \cfrac{d^3y}{dx^3}=t^3 \end{cases}

And you are given that

when t = 2 t=2 , d x d t = 1 2 \cfrac{dx}{dt}=-\cfrac{1}{2} , x = 1 x=1 ,

d x d t + d x d t = 0 |\cfrac{dx}{dt}|+\cfrac{dx}{dt}=0 for all t R t\in R ,

when t = 1 t=1 , y = 0 y=0 .


If x , y x,y can also be related by the function y = f ( x ) y=f(x) ,

solve the following system of equations:

{ y = f ( x ) e y = x 2 \begin{cases} y=f(x) \\ e^y=x^2 \end{cases}

The positive solution is x = p , y = l n q x=p, y=ln q such that p p and q q are positive integers.

Give your answer as p + q p+q .

This is part of the set Things Get Harder! .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Donglin Loo
Jun 17, 2018

{ d y d x = 2 t d 3 y d x 3 = t 3 \begin{cases} \cfrac{dy}{dx}=2t \\ \cfrac{d^3y}{dx^3}=t^3 \end{cases}

Relevant wikis: Parametric Derivative , Chain Rule

d y d x = d y d t d t d x \cfrac{dy}{dx}=\cfrac{dy}{dt}\cdot\cfrac{dt}{dx}

d y d t d t d x = 2 t \therefore \cfrac{dy}{dt}\cdot\cfrac{dt}{dx}=2t

d 3 y d x 3 = d d x ( d 2 y d x 2 ) = d d t ( d 2 y d x 2 ) d t d x \cfrac{d^3y}{dx^3}=\cfrac{d}{dx}(\cfrac{d^2y}{dx^2})=\cfrac{d}{dt}(\cfrac{d^2y}{dx^2})\cdot\cfrac{dt}{dx}

d d t ( d 2 y d x 2 ) d t d x = t 3 \therefore \cfrac{d}{dt}(\cfrac{d^2y}{dx^2})\cdot\cfrac{dt}{dx}=t^3

{ d y d t d t d x = 2 t d d t ( d 2 y d x 2 ) d t d x = t 3 \begin{cases} \cfrac{dy}{dt}\cdot\cfrac{dt}{dx}=2t \\ \cfrac{d}{dt}(\cfrac{d^2y}{dx^2})\cdot\cfrac{dt}{dx}=t^3 \end{cases}

d d t ( d 2 y d x 2 ) d t d x d y d t d t d x = t 3 2 t \cfrac{\cfrac{d}{dt}(\cfrac{d^2y}{dx^2})\cdot\cfrac{dt}{dx}}{\cfrac{dy}{dt}\cdot\cfrac{dt}{dx}}=\cfrac{t^3}{2t}

d d t ( d 2 y d x 2 ) d y d t = t 3 2 t \cfrac{\cfrac{d}{dt}(\cfrac{d^2y}{dx^2})}{\cfrac{dy}{dt}}=\cfrac{t^3}{2t}

d d t ( d 2 y d x 2 ) 2 t d x d t = t 3 2 t \cfrac{\cfrac{d}{dt}(\cfrac{d^2y}{dx^2})}{2t\cdot\cfrac{dx}{dt}}=\cfrac{t^3}{2t}

d d t ( d 2 y d x 2 ) d x d t = t 3 \cfrac{\cfrac{d}{dt}(\cfrac{d^2y}{dx^2})}{\cfrac{dx}{dt}}=t^3

d 2 y d x 2 = d d x ( d y d x ) = d d t ( d y d x ) d t d x = d d t ( 2 t ) d t d x = 2 d t d x \cfrac{d^2y}{dx^2}=\cfrac{d}{dx}(\cfrac{dy}{dx})=\cfrac{d}{dt}(\cfrac{dy}{dx})\cdot\cfrac{dt}{dx}=\cfrac{d}{dt}(2t)\cdot\cfrac{dt}{dx}=2\cfrac{dt}{dx}

d d t ( 2 d t d x ) d x d t = t 3 \therefore \cfrac{\cfrac{d}{dt}(2\cfrac{dt}{dx})}{\cfrac{dx}{dt}}=t^3

d d t ( 2 1 d x d t ) d x d t = t 3 \cfrac{\cfrac{d}{dt}(2\cdot\cfrac{1}{\cfrac{dx}{dt}})}{\cfrac{dx}{dt}}=t^3

2 ( d x d t ) 2 d 2 x d t 2 d x d t = t 3 \cfrac{\cfrac{-2}{(\cfrac{dx}{dt})^2}\cdot\cfrac{d^2x}{dt^2}}{\cfrac{dx}{dt}}=t^3

Let d x d t = z \cfrac{dx}{dt}=z

d d t ( d x d t ) = d z d t \Rightarrow \cfrac{d}{dt}({\cfrac{dx}{dt}})=\cfrac{dz}{dt}

d 2 x d t 2 = d z d t \therefore \cfrac{d^2x}{dt^2}=\cfrac{dz}{dt}

2 d z d t z 3 = t 3 \cfrac{-2\cfrac{dz}{dt}}{z^3}=t^3

2 z 3 d z = t 3 d t \int \cfrac{-2}{z^3}dz=\int t^3dt

1 z 2 = 1 4 t 4 + c 1 \cfrac{1}{z^2}=\cfrac{1}{4}\cdot{t^4}+c_{1}

When t = 2 t=2 , d x d t = 1 2 \cfrac{dx}{dt}=-\cfrac{1}{2}

When t = 2 t=2 , z = 1 2 z=-\cfrac{1}{2}

1 ( 1 2 ) 2 = 1 4 2 4 + c 1 \cfrac{1}{(-\cfrac{1}{2})^2}=\cfrac{1}{4}\cdot{2^4}+c_{1}

4 = 4 + c 1 4=4+c_{1}

c 1 = 0 c_{1}=0

1 z 2 = 1 4 t 4 \therefore \cfrac{1}{z^2}=\cfrac{1}{4}\cdot{t^4}

d x d t + d x d t = 0 |\cfrac{dx}{dt}|+\cfrac{dx}{dt}=0

z + z = 0 |z|+z=0

z = z \Rightarrow |z|=-z

z < 0 \therefore z<0

1 z = 1 2 t 2 \therefore \cfrac{1}{z}=\cfrac{-1}{2}\cdot{t^2}

1 d x d t = 1 2 t 2 \cfrac{1}{\cfrac{dx}{dt}}=\cfrac{-1}{2}\cdot{t^2}

d t d x = 1 2 t 2 \cfrac{dt}{dx}=\cfrac{-1}{2}\cdot{t^2}

1 t 2 d t = 1 2 1 d x \int\cfrac{-1}{t^2}dt=\cfrac{1}{2}\int1dx

1 t = x 2 + c 2 \cfrac{1}{t}=\cfrac{x}{2}+c_{2}

When t = 2 t=2 , x = 1 x=1

1 2 = 1 2 + c 2 \cfrac{1}{2}=\cfrac{1}{2}+c_{2}

c 2 = 0 c_{2}=0

1 t = x 2 \therefore \cfrac{1}{t}=\cfrac{x}{2}

d y d t d t d x = 2 t \cfrac{dy}{dt}\cdot\cfrac{dt}{dx}=2t

d y d t 1 2 t 2 = 2 t \cfrac{dy}{dt}\cdot\cfrac{-1}{2}\cdot{t^2}=2t

d y d t = 2 t 2 1 t 2 \cfrac{dy}{dt}=2t\cdot{-2}\cdot\cfrac{1}{t^2}

d y d t = 4 t \cfrac{dy}{dt}=\cfrac{-4}{t}

y = 4 l n t + c 3 y=-4ln|t|+c_{3}

When t = 1 t=1 , y = 0 y=0

0 = 4 l n 1 + c 3 0=-4ln|1|+c_{3}

c 3 = 0 c_{3}=0

y = 4 l n t \therefore y=-4ln|t|

y = l n ( 1 t ) 4 y=ln(\cfrac{1}{t})^4

y = l n ( x 2 ) 4 y=ln(\cfrac{x}{2})^4


{ y = f ( x ) e y = x 2 \begin{cases} y=f(x) \\ e^y=x^2 \end{cases}

{ y = l n ( x 2 ) 4 e y = x 2 \Rightarrow \begin{cases} y=ln(\cfrac{x}{2})^4 \\ e^y=x^2 \end{cases}

{ e y = ( x 2 ) 4 e y = x 2 \Rightarrow \begin{cases} e^y=(\cfrac{x}{2})^4 \\ e^y=x^2 \end{cases}

( x 2 ) 4 = x 2 \therefore (\cfrac{x}{2})^4=x^2

x 4 16 = x 2 \cfrac{x^4}{16}=x^2

x 4 = 16 x 2 x^4=16x^2

x > 0 , x 0 \because x>0, \therefore x\neq0

x 2 = 16 \therefore x^2=16

x > 0 , x = 4 x>0,\therefore x=4

When x = 4 x=4 ,

y = l n ( 4 2 ) 4 = l n ( 2 ) 4 = l n 16 y=ln(\cfrac{4}{2})^4=ln(2)^4=ln16

p + q = 4 + 16 = 20 \therefore p+q=4+16=20

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...