Parametric function

Calculus Level 1

{ x = 2 t y = 3 t t \large \begin{cases} x = 2t \\ y = 3t \cdot t \end{cases}

Given the system of equations above, find d y d x \dfrac {dy}{dx} .

2 t 1 2t-1 4 t 4t x + 2 x+2 3 t 3t 2 t 2t x t x-t

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mohammad Khaza
Oct 4, 2017

at first,

d x d t = 2 \frac{dx}{dt}=2

d y d t = 6 t \frac{dy}{dt}=6t

now, d y d x = ( d y d t ) × ( d t d x ) \frac{dy}{dx}=(\frac{dy}{dt}) \times (\frac{dt}{dx}) = 6 t 2 = 3 t \frac{6t}{2}=3t

Gandoff Tan
Jul 26, 2019

The long way around:

x = 2 t t = 1 2 x x=2t\Rightarrow t=\frac12x

y = 3 ( 1 2 x ) 2 y=3{\left(\frac12x\right)}^2

y = 3 4 x 2 y=\frac34x^2

d y d x = 3 2 x \frac{dy}{dx}=\frac32x

d y d x = 3 2 ( 2 t ) \frac{dy}{dx}=\frac32\left(2t\right)

d y d x = 3 t \boxed{\frac{dy}{dx}=3t}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...