Parametric Relations

Calculus Level 1

If y y is a function of x x as defined by the parametric relation y = 3 sin 2 t y=3\sin ^{ 2 }{ t } when x = tan t x=\tan { t } , then determine the value of lim x y \displaystyle\lim_{ x\rightarrow \infty }{ y } .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ronak Agarwal
Sep 8, 2014

I have a solution that you will like.

as x w e h a v e t π 2 x\rightarrow \infty \quad we\quad have\quad t\rightarrow \frac { \pi }{ 2 }

Clearly y 3 y\rightarrow 3

Hence lim x y = 3 \lim _{ x\rightarrow \infty }{ y } =3

Yeah, very nice. This approach didn't strike me :D

Kïñshük Sïñgh - 6 years, 9 months ago

y = 3 s i n 2 t x = t a n ( t ) t = t a n 1 x t h e r e f o r e , y = 3 ( s i n t a n 1 x ) 2 y = 3 ( s i n s i n 1 x 1 + x 2 ) 2 y = 3 x 2 1 + x 2 l i m x y = 3 y=3{ sin }^{ 2 }t\\ x=tan(t)\\ t={ tan }^{ -1 }x\\ therefore,\quad y=3{ (sin{ tan }^{ -1 }x) }^{ 2 }\\ y=3({ sin{ sin }^{ -1 }\frac { x }{ \sqrt { 1+{ x }^{ 2 } } } })^{ 2 }\\ y=\frac { 3{ x }^{ 2 } }{ 1+{ x }^{ 2 } } \\ \underset { x\rightarrow \infty }{ lim } y=3

Bostang Palaguna
Mar 20, 2021

y = 3 s i n 2 t = 3 ( 1 c o s 2 t ) = 3 ( 1 1 1 s e c 2 t ) = 3 ( 1 1 1 + t a n 2 t ) y = 3 sin^2 t = 3 (1-cos^2 t) = 3 (1-\frac{1}{1-sec^2 t}) = 3 (1-\frac{1}{1+tan^2 t})

let: u = t a n t u = tan t

so: l i m x y = l i m u 3 ( 1 1 1 + u 2 ) = 3 lim_{x\to\infty} y = lim_{u\to\infty}3(1-\frac{1}{1+u^2}) = \boxed{3}

Krishna Karthik
Nov 19, 2018

As x approaches infinity, tan ( t ) \tan(t) approaches infinity. We know that as t approaches 90º, tan ( 90 º ) = i n f i n i t y \tan(90º)=infinity

Therefore when x x approaches infinity, t = 90 º t=90º . Substituting 90º in y, we get

y = 3 s i n 2 ( 90 º ) y=3sin^2(90º) = 3 1 2 3*1^2 =3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...