Paranormal

Calculus Level 3

If P Q PQ is a normal of the parabola y = 1 k x 2 y = \frac{1}{k}x^2 at P P , and the lowest possible y y -coordinate of Q Q is 20 20 , find k k .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Mark Hennings
Jan 7, 2021

The gradient of the curve at the point P ( k t , k t 2 ) P\; (kt,kt^2) is 2 t 2t , so the equation of the normal to the curve at that point is

x + 2 t y = k t + 2 k t 3 x + 2ty \; = \; kt + 2kt^3

and this curve meets the parabola at the point ( k s , k s 2 ) (ks,ks^2) where k s + 2 k t s 2 = k t + 2 k t 3 k ( s t ) ( 1 + 2 t ( s + t ) ) = 0 \begin{aligned} ks + 2kts^2 & = \; kt + 2kt^3 \\ k(s-t)\big(1 + 2t(s+t)\big) & = \; 0 \end{aligned} so the point Q ( k s , k s 2 ) Q\;(ks,ks^2) is given by s = t 1 2 t s = -t - \tfrac{1}{2t} . The y y -coordinate of Q Q is thus k ( t + 1 2 t ) 2 = k ( t 1 2 t ) 2 + 2 k k\big(t + \tfrac{1}{2t}\big)^2 \; = \; k\big(t - \tfrac{1}{2t}\big)^2 + 2k and so the smallest possible y y -coordinate of Q Q is 2 k 2k . Thus we deduce that k = 10 k = \boxed{10} .

Kevin D
Jan 7, 2021

This isn't really an elegant solution. Also I'm a bit of a LaTex noob so please forgive the formatting.

y = x 2 k y=\frac{x^2}{k}

We shall first find the equation of the normal line at x = p x=p .

The gradient of the normal line is 1 d y / d x = 1 2 x / k x = p = k 2 p -\frac{1}{dy/dx}|=-\frac{1}{2x/k}|_{x=p}=\frac{-k}{2p} .

We let y t a n y_{tan} be the normal line.

y t a n ( x ) = k 2 p x + c y_{tan}(x)=\frac{-k}{2p}x+c

y t a n ( p ) = p 2 k y_{tan}(p)=\frac{p^2}{k}

k 2 p p + c = p 2 k \Rightarrow \frac{-k}{2p}p+c=\frac{p^2}{k}

c = p 2 k + k 2 \Rightarrow c=\frac{p^2}{k}+\frac{k}{2}

y t a n = k 2 2 p 2 2 k k x 2 p \Rightarrow y_{tan}=\frac{k^2-2p^2}{2k}-\frac{kx}{2p}

y t a n ( x ) y_{tan}(x) and y = x 2 k y=\frac{x^2}{k} intersect at points P ( p , p 2 k ) P(p,\frac{p^2}{k}) and Q ( q , q 2 k ) Q(q,\frac{q^2}{k}) so we solve k 2 2 p 2 2 k k q 2 p = q 2 k \frac{k^2-2p^2}{2k}-\frac{kq}{2p}=\frac{q^2}{k} for q q .

Thus q = ( k 2 + 2 p 2 ) 2 p q=\frac{-(k^2+2p^2)}{2p} (or q = p q=p which is not desired in this case)

We want the minimum of q 2 k \frac{q^2}{k} to be 20. So we define the function f = q 2 k = ( k 2 + 2 p 2 ) 2 4 k p 2 f=\frac{q^2}{k}=\frac{(k^2+2p^2)^2}{4kp^2}

Next, we solve d f d p = 0 \frac{df}{dp}=0 for p p in terms of k k and substitute it back in to f f .

d f d p = ( 2 p 2 + k 2 ) ( 2 p 2 k 2 ) 2 p 3 k \frac{df}{dp}=\frac{(2p^2+k^2)(2p^2-k^2)}{2p^3 k}

( 2 p 2 + k 2 ) ( 2 p 2 k 2 ) 2 p 3 k = 0 \frac{(2p^2+k^2)(2p^2-k^2)}{2p^3 k}=0

2 p 2 + k 2 = 0 \Rightarrow 2p^2+k^2=0 or 2 p 2 k 2 = 0 2p^2-k^2=0

p 2 = k 2 2 \Rightarrow p^2=\frac{-k^2}{2} or p 2 = k 2 2 p^2=\frac{k^2}{2}

f p 2 = k 2 2 = ( k 2 + 2 ( k 2 2 ) ) 2 4 k ( k 2 2 ) f|_{p^2=\frac{-k^2}{2}}=\frac{(k^2+2(\frac{-k^2}{2}))^2}{4k(\frac{-k^2}{2})}

= 0 2 4 k ( k 2 2 ) =\frac{0^2}{4k(\frac{-k^2}{2})}

= 0 =0

(this answer doesn't mean much since p p is supposed to be a real number anyways)

f p 2 = k 2 2 f|_{p^2=\frac{k^2}{2}} = ( k 2 + 2 ( k 2 2 ) ) 2 4 k ( k 2 2 ) =\frac{(k^2+2(\frac{k^2}{2}))^2}{4k(\frac{k^2}{2})} = 2 k =2k .

If we equate 2 k = 20 2k=20 , we obtain the desired k = 10 \boxed{k=10} . And for completeness, q 2 10 = 20 \frac{q^2}{10}=20 when p = ± 5 2 p=\pm 5\sqrt{2} . q 2 10 > 20 \frac{q^2}{10}>20 for any other values of p p .

Sathvik Acharya
Jan 7, 2021

Let P P be any point on the parabola y = x 2 k P = ( a , a 2 k ) y=\dfrac{x^2}{k}\implies P=\left(a,\dfrac{a^2}{k}\right) for some real a a .

The slope of the normal at point P P is given by 1 d y d x ] x = a = 1 2 x k ] x = a = k 2 a -\dfrac{1}{\left. \dfrac{\mathrm dy}{\mathrm dx}\right]_{x=a}}=-\dfrac{1}{\left.\dfrac{2x}{k}\right]_{x=a}}=-\dfrac{k}{2a} Using the Point-Slope form, the equation of line P Q PQ is, y a 2 k = k 2 a ( x a ) y-\dfrac{a^2}{k}=-\dfrac{k}{2a}(x-a) k x 2 a + y a 2 k k 2 = 0 \implies \frac{kx}{2a}+y-\frac{a^2}{k}-\frac{k}{2}=0 In order to find the intersection points ( P P and Q Q ) of line P Q PQ and parabola y = x 2 k y=\dfrac{x^2}{k} , we need to solve the pair of equations, { k x 2 a + y a 2 k k 2 = 0 y = x 2 k \begin{cases} \dfrac{kx}{2a}+y-\dfrac{a^2}{k}-\dfrac{k}{2}=0 \\ y= \dfrac{x^2}{k} \end{cases} This leads us to the solutions P = ( a , a 2 k ) Q = ( k 2 2 a a , k 3 4 a 2 + a 2 k + k ) \begin{aligned} P&=\left(a,\dfrac{a^2}{k}\right) \\ \\ Q&=\left(-\frac{k^2}{2a}-a, \; \frac{k^3}{4a^2}+\frac{a^2}{k}+k\right) \end{aligned} So, we are given that min ( k 3 4 a 2 + a 2 k + k ) = 20 \text{min}\left(\dfrac{k^3}{4a^2}+\dfrac{a^2}{k}+k\right)=20 . Differentiating with respect to a a and equating to 0 0 , d d a ( k 3 4 a 2 + a 2 k + k ) = 0 \dfrac{\mathrm d}{\mathrm da}\left(\dfrac{k^3}{4a^2}+\dfrac{a^2}{k}+k\right)=0 k 3 2 a 3 + 2 a k = 0 k = 2 a \begin{aligned} &\implies -\frac{k^3}{2a^3}+\frac{2a}{k}&=0 \\ \\ &\implies k =\sqrt{2}a \end{aligned} Therefore , a = k 2 a=\dfrac{k}{\sqrt{2}} is a critical point, and is in fact, the point of minima. So, when a = k 2 2 a=\dfrac{k\sqrt{2}}{2} , the expression k 3 4 a 2 + a 2 k + k \dfrac{k^3}{4a^2}+\dfrac{a^2}{k}+k is equal to 20 20 . k 3 4 ( k 2 2 ) 2 + ( k 2 2 ) 2 k + k = 20 k 2 + k 2 + k = 20 k = 10 \begin{aligned} &\implies \dfrac{k^3}{4\left (\dfrac{k\sqrt{2}}{2}\right )^2}+\dfrac{\left (\dfrac{k\sqrt{2}}{2}\right )^2}{k}+k=20 \\ \\ &\implies \frac{k}{2}+\frac{k}{2}+k=20 \\ \\ &\implies \boxed{k=10}\end{aligned}

David Vreken
Jan 8, 2021

Let the coordinates of P P be P ( p , p 2 k ) P(p, \cfrac{p^2}{k}) and let the coordinates of Q Q be Q ( q , q 2 k ) Q(q, \cfrac{q^2}{k}) .

The slope of the tangent at P P on y = 1 k x 2 y = \cfrac{1}{k}x^2 is 2 p k \cfrac{2p}{k} and the slope of the normal at P P is k 2 p -\cfrac{k}{2p} , making the equation of the normal y = k 2 p ( x p ) + p 2 k y = -\cfrac{k}{2p}(x - p) + \cfrac{p^2}{k} .

Since Q ( q , q 2 k ) Q(q, \cfrac{q^2}{k}) is on the normal as well, q 2 k = k 2 p ( q p ) + p 2 k \cfrac{q^2}{k} = -\cfrac{k}{2p}(q - p) + \cfrac{p^2}{k} , which solves to q = p k 2 2 p q = -p - \cfrac{k^2}{2p} , so that the y y -coordinate of Q Q is q 2 k = p 2 k + k + k 3 4 p 2 \cfrac{q^2}{k} = \cfrac{p^2}{k} + k + \cfrac{k^3}{4p^2} .

By the AM-GM inequality, p 2 k + k 3 4 p 2 2 p 2 k k 3 4 p 2 = k \cfrac{p^2}{k} + \cfrac{k^3}{4p^2} \geq 2\sqrt{\cfrac{p^2}{k} \cdot \cfrac{k^3}{4p^2}} = k , so p 2 k + k + k 3 4 p 2 k + k = 2 k \cfrac{p^2}{k} + k + \cfrac{k^3}{4p^2} \geq k + k = 2k , which means the lowest possible y y -coordinate of Q Q is 2 k 2k .

Therefore, 2 k = 20 2k = 20 , and k = 10 k = \boxed{10} .

Rocco Dalto
Jan 10, 2021

y 0 2 = x 0 2 k y 0 = 2 x 0 k m P Q = k 2 x 0 y_{0}^2 = \dfrac{x_{0}^2}{k} \implies y'_{0} = \dfrac{2x_{0}}{k} \implies m_{PQ} = -\dfrac{k}{2x_{0}}

At P : y = k 2 x 0 ( x x 0 ) + x 0 2 k P: \:\ y = -\dfrac{k}{2x_{0}}(x - x_{0}) + \dfrac{x_{0}^2}{k}

At Q : x 1 2 = k 2 x 0 ( x 1 x 0 ) + x 0 2 k Q: \:\ \:\ x_{1}^2 = -\dfrac{k}{2x_{0}}(x_{1} - x_{0}) + \dfrac{x_{0}^2}{k}

( 2 x 0 ) x 1 2 + k 2 x 1 ( k 2 x 0 + 2 x 0 3 ) = 0 x 1 = k 2 ± ( k 2 + 4 x 0 2 4 x 0 \implies (2x_{0})x_{1}^2 + k^2x_{1} - (k^2x_{0} + 2x_{0}^3) = 0 \implies x_{1} = \dfrac{k^2 \pm (k^2 + 4x_{0}^2}{4x_{0}}

For ( + ) x 1 = x 0 (+) \:\ x_{1} = x_{0} \therefore drop ( + ) (+) and choose x 1 = k 2 4 x 0 2 x 0 x_{1} = \dfrac{k^2}{4x_{0}^2} - x_{0} \implies x 1 2 k = k 3 4 x 0 2 + k + x 0 2 k \dfrac{x_{1}^2}{k} = \dfrac{k^3}{4x_{0}^2} + k + \dfrac{x_{0}^2}{k}

Let g ( x 0 ) = k 3 4 x 0 2 + k + x 0 2 k g(x_{0}) = \dfrac{k^3}{4x_{0}^2} + k + \dfrac{x_{0}^2}{k} \implies

P : ( x 0 , x 0 2 k ) P:(x_{0},\dfrac{x_{0}^2}{k}) and Q : ( k 2 2 x 0 x 0 , g ( x 0 ) ) Q:(-\dfrac{k^2}{2x_{0}} - x_{0},g(x_{0})) .

g ( x 0 ) = k 3 4 x 0 2 + k + x 0 2 k g ( x 0 ) = 4 x 0 4 k 4 2 x 0 3 k = 0 g(x_{0}) = \dfrac{k^3}{4x_{0}^2} + k + \dfrac{x_{0}^2}{k} \implies g'(x_{0}) = \dfrac{4x_{0}^4 - k^4}{2x_{0}^3k} = 0

x 0 = k 2 \implies x_{0} = \dfrac{k}{\sqrt{2}}

and

( k 2 < x 0 < k 2 g < 0 ) (-\dfrac{k}{\sqrt{2}} < x_{0} < \dfrac{k}{\sqrt{2}} \implies g' < 0) and ( x 0 > k 2 g > 0 ) (x_{0} > \dfrac{k}{\sqrt{2}} \implies g' > 0) \implies min occurs at x 0 = k 2 x_{0} = \dfrac{k}{\sqrt{2}}

g ( k 2 ) = 2 k = 20 k = 10 \implies g(\dfrac{k}{\sqrt{2}}) = 2k = 20 \implies k = \boxed{10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...