Define the Collatz function as follows: if is even, then . If it is odd, then . Let be the least number of applications of the function on that is equal to . (For example, since 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 has length 8, and since 12 -> 6 -> 3 ->... -> 1 has length 10.) Let be the concatenation of all positive integers up to and including (starts ). Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.