Part 9

Algebra Level 4

m = 3 + 2 2 3 2 2 1 3 n = 17 + 12 2 + 17 12 2 + 2 3 \begin{aligned} m&=&\sqrt[3]{\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}-1} \\ n&=&\sqrt[3]{\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}+2} \end{aligned}

Let the values of m m and n n be described above. Compute 2 ( 20 m + 6 n ) 2 32 2(20m+6n)^{2}-32 .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Udaiwal
Jan 12, 2016

Note that 3 ± 2 2 = ( 2 ± 1 ) 2 = 2 ± 1 \sqrt{3\pm2\sqrt2}=\sqrt{(\sqrt2\pm1)^2}=\sqrt2\pm1 and similarly 17 + 12 2 = ( 3 ± 2 2 ) 2 = 3 ± 2 2 \sqrt{17+12\sqrt2}=\sqrt{(3\pm2\sqrt2)^2}=3\pm2\sqrt2 . m = 2 + 1 2 + 1 1 3 = 1 3 = 1 n = 3 + 2 2 + 3 2 2 + 3 3 = 8 3 = 2 2 ( 20 m + 6 n ) 2 32 = 2 ( 20 + 12 ) 2 32 = 2016. m=\sqrt[3]{\sqrt2+1-\sqrt2+1-1}=\sqrt[3]{1}=1 \\ n=\sqrt[3]{3+2\sqrt2+3-2\sqrt2+3}=\sqrt[3]{8}=2 \\ \implies 2(20m+6n)^{2}-32=2(20+12)^2-32=2016.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...