Partial Derivatives 1

Calculus Level 4

f ( x , y , z ) = x 3 y cos ( y ln x ) + e x y z ln ( z + 1 ) π \large f(x,y,z) = x^{3y}\cos (y\ln x) + e^{xyz}-\ln { { (z+1) }^{ \pi } }

Given the above and that z ( y ( f x ) ) = n e 8 \dfrac { \partial }{ \partial z } \left( \dfrac { \partial }{ \partial y } \left( \dfrac { \partial f }{ \partial x } \right) \right) =\dfrac { n }{ { e }^{ 8 } } at the point ( 2 , 4 , 1 ) ( 2,-4,1) , find n n .


The answer is 41.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
Oct 14, 2017

Notice that z ( y ( f x ) ) \dfrac{\partial}{\partial z} \left(\dfrac{\partial}{\partial y}\left(\dfrac{\partial f}{\partial x}\right)\right) will only leave terms with z z , since z \dfrac{\partial}{\partial z} of all other terms with x x and y y will go to 0 0 . Also notice that x ( ln ( z + 1 ) π ) = 0 \dfrac{\partial}{\partial x} \big(- \ln (z + 1) ^{\pi}\big) = 0 . Thus,

z ( y ( f x ) ) = z ( y ( x ( e x y z ) ) ) = z ( y ( y z e x y z ) ) = z ( z e x y z + x y z 2 e x y z ) = e x y z ( 1 + 3 x y z + ( x y z ) 2 ) \begin{aligned} \dfrac{\partial}{\partial z} \left(\dfrac{\partial}{\partial y}\left(\dfrac{\partial f}{\partial x}\right)\right) & = \dfrac{\partial}{\partial z} \left(\dfrac{\partial}{\partial y}\left(\dfrac{\partial}{\partial x}\left(e^{xyz}\right)\right)\right) \\ & = \dfrac{\partial}{\partial z} \left(\dfrac{\partial}{\partial y}\left(yze^{xyz}\right)\right) \\ & = \dfrac{\partial}{\partial z} \left(ze^{xyz} + xyz^2e^{xyz}\right) \\ & = e^{xyz} \left(1 + 3xyz + (xyz)^2\right) \end{aligned}

Plugging in our point ( x , y , z ) = ( 2 , 4 , 1 ) (x,y,z) = (2,-4,1) , we have e 8 ( 1 24 + 64 ) = 41 e 8 e^{-8}\left(1 - 24 + 64\right) = 41e^{-8} , so our answer is 41 \boxed{41} .

Chew-Seong Cheong
Oct 14, 2017

f ( x , y , z ) = x 3 y cos ( y ln x ) + e x y z ln ( z + 1 ) π Term is independent of x . f x = x x 3 y cos ( y ln x ) + x e x y z 0 y ( f x ) = y ( x x 3 y cos ( y ln x ) ) + y ( x e x y z ) Term is independent of z . z ( y ( f x ) ) = 0 + z ( y ( x e x y z ) ) = z ( y y z e x y z ) = z ( z e x y z + x y z 2 e x y z ) = e x y z + x y z e x y z + 2 x y z e x y z + x 2 y 2 z 2 e x y z = e x y z ( 1 + 3 x y z + x 2 y 2 z 2 ) \begin{aligned} f(x,y,z) & = x^{3y}\cos (y \ln x) + e^{xyz} - \color{#3D99F6} \ln (z+1)^\pi & \small \color{#3D99F6} \text{Term is independent of }x. \\ \frac {\partial f}{\partial x} & = \frac {\partial}{\partial x} x^{3y}\cos (y \ln x) + \frac {\partial}{\partial x} e^{xyz} - \color{#3D99F6} 0 \\ \frac {\partial}{\partial y} \left(\frac {\partial f}{\partial x}\right) & = {\color{#3D99F6} \frac {\partial}{\partial y} \left(\frac {\partial}{\partial x} x^{3y}\cos (y \ln x)\right)} + \frac {\partial}{\partial y} \left(\frac {\partial}{\partial x} e^{xyz}\right) & \small \color{#3D99F6} \text{Term is independent of }z. \\ \frac {\partial}{\partial z} \left(\frac {\partial}{\partial y} \left(\frac {\partial f}{\partial x}\right) \right) & = {\color{#3D99F6} 0} + \frac {\partial}{\partial z} \left(\frac {\partial}{\partial y} \left(\frac {\partial}{\partial x} e^{xyz}\right) \right) \\ & = \frac {\partial}{\partial z} \left(\frac {\partial}{\partial y} yze^{xyz}\right) \\ & = \frac {\partial}{\partial z} \left(ze^{xyz} + xyz^2e^{xyz} \right) \\ & = e^{xyz} + xyze^{xyz} + 2xyze^{xyz} + x^2y^2z^2e^{xyz} \\ & = e^{xyz} \left(1+ 3xyz + x^2y^2z^2\right) \end{aligned}

Therefore,

z ( y ( f x ) ) ( 2 , 4 , 1 ) = e 8 ( 1 24 + 64 ) = 41 e 8 \begin{aligned} \frac {\partial}{\partial z} \left(\frac {\partial}{\partial y} \left(\frac {\partial f}{\partial x}\right) \right) \bigg|_{(2,-4,1)} & = e^{-8} \left(1- 24 + 64 \right) = \frac {41}{e^8}\end{aligned}

n = 41 \implies n = \boxed{41}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...