Find δ x δ w at the point ( x , y , z ) = ( 2 , − 1 , 1 ) if w = x 2 + y 2 + z 2 , z 3 − x y + y z + y 3 = 1 , and x and y are the independent variables.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Simple standard approach.
{ w = x 2 + y 2 + z 2 z 3 − x y + y z + y 3 = 1 ⇒ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ ∂ x ∂ w = 2 x + 2 z ∂ x ∂ z 3 z 2 ∂ x ∂ z − y + y ∂ x ∂ z = 0 ∴ ∂ x ∂ z = 3 z 2 + y y . . . ( 1 ) . . . ( 2 ) . . . ( 3 ) E l i m i n a t i n g ∂ x ∂ z from (1) and (3), and substituting for (x,y,z), ∂ x ∂ w = 2 x + 2 z ∗ 3 z 2 + y y = 2 ∗ 2 + 2 ∗ 1 ∗ 3 ∗ 1 2 − 1 − 1 = 3
Problem Loading...
Note Loading...
Set Loading...
It is given that:
{ w = x 2 + y 2 + z 2 z 3 − x y + y z + y 3 = 1 ⇒ ⎩ ⎪ ⎨ ⎪ ⎧ ∂ x ∂ w = 2 x + 2 z ∂ x ∂ z 3 z 2 ∂ x ∂ z − y + y ∂ x ∂ z = 0 . . . ( 1 ) . . . ( 2 )
Substituting x = 2 , y = − 1 and z = 1 in Eq. 2:
3 ( 1 ) ∂ x ∂ z − ( − 1 ) + ( − 1 ) ∂ x ∂ z 2 ∂ x ∂ z + 1 ⇒ ∂ x ∂ z = 0 = 0 = − 2 1
From Eq. 1: ∂ x ∂ w = 2 ( 2 ) + 2 ( 1 ) ( − 2 1 ) = 3