Partial differentiation is fun!

Calculus Level 4

If z ( x + y ) = x 2 + y 2 z(x+y) = x^2 + y^2 , then what is the value of

( z x z y ) 2 ? \left(\dfrac{\partial z}{\partial x} - \dfrac{\partial z}{\partial y} \right)^2 ? For more problems on mathematics, click here.

4 ( 1 z x z y ) 4\left(1-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right) 4 ( 1 + z x z y ) 4\left(1+\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right) 2 ( 1 z x z y ) 2\left(1-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right) 4 ( 1 z x + z y ) 4\left(1-\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}\right) 4 ( 1 z x z y ) 4\left(-1-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Oct 29, 2016

If z = (x^2 + y^2)/(x+y), then:

dz/dx = [(2x)*(x+y) - (x^2 + y^2)]/(x+y)^2 = (x^2 + 2xy - y^2)/(x+y)^2 (i);

dz/dy = [(2y)*(x+y) - (x^2 + y^2)]/(x+y)^2 = (y^2 + 2xy - x^2)/(x+y)^2 (ii);

dz/dx - dz/dy = (2x^2 - 2y^2)/(x+y)^2 = 2 (x-y)/(x+y) = 2 [1 - 2y/(x+y)] (iii).

Now squaring (iii) produces:

(dz/dx - dz/dy)^2 = 4*[1 - 4y/(x+y) + (4y^2)/(x+y)^2];

or 4*[1 - 4y(x+y)/(x+y)^2 + (4y^2)/(x+y)^2];

or 4*[1 + (4y^2 - 4xy - 4y^2)/(x+y)^2];

or 4*[1 - 4xy/(x+y)^2];

or 4*[1 - {(x^2 + 2xy - y^2)/(x+y)^2} - {(y^2 + 2xy - x^2)/(x+y)^2}];

or 4*(1 - dz/dx - dz/dy)

thus, choice B is correct.

Good solution! You should learn LaTeX for better solutions.

Sahil Silare - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...