Partial fraction challenge

Algebra Level 5

S = 1 4 ( 1 ) 4 + 1 + 2 4 ( 2 ) 4 + 1 + 3 4 ( 3 ) 4 + 1 + + 2016 4 ( 2016 ) 4 + 1 S=\frac{1}{4(1)^{4}+1}+\frac{2}{4(2)^{4}+1}+\frac{3}{4(3)^{4}+1}+\dots+\frac{2016}{4(2016)^{4}+1}

If the sum above S = 2017 p 2017 q + 1 S = \dfrac{2017p}{2017q+1} , where p p and q q are positive integers , find p + q p+q .


The answer is 5040.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 22, 2016

S = n = 1 2016 n 4 n 4 + 1 = n = 1 2016 n ( 2 n 2 2 n + 1 ) ( 2 n 2 + 2 n + 1 ) = 1 4 n = 1 2016 ( 1 2 n 2 2 n + 1 1 2 n 2 + 2 n + 1 ) = 1 4 ( n = 1 2016 1 2 n 2 2 n + 1 n = 1 2016 1 2 n 2 + 2 n + 1 ) Let n = m 1 = 1 4 ( n = 1 2016 1 2 n 2 2 n + 1 m = 2 2017 1 2 ( m 1 ) 2 + 2 ( m 1 ) + 1 ) = 1 4 ( n = 1 2016 1 2 n 2 2 n + 1 m = 2 2017 1 2 m 2 2 m + 1 ) Putting m = n = 1 4 ( n = 1 2016 1 2 n 2 2 n + 1 n = 2 2017 1 2 n 2 2 n + 1 ) = 1 4 ( 1 1 2 ( 2017 ) 2 2 ( 2017 ) + 1 ) = 1 4 ( 1 1 2017 4032 + 1 ) = 1 4 ( 2017 4032 2017 4032 + 1 ) = 2017 1008 2017 4032 + 1 \begin{aligned} S & = \sum_{n=1}^{2016} \frac n{4n^4+1} \\ & = \sum_{n=1}^{2016} \frac n{(2n^2-2n+1)(2n^2+2n+1)} \\ & = \frac 14 \sum_{n=1} ^{2016} \left( \frac 1{2n^2-2n+1} - \frac 1{2n^2+2n+1} \right) \\ & = \frac 14 \left( \sum_{n=1} ^{2016} \frac 1{2n^2-2n+1} - \sum_{\color{#3D99F6}{n=1}} ^{\color{#3D99F6}{2016}} \frac 1{2\color{#3D99F6}{n}^2+2\color{#3D99F6}{n}+1} \right) \quad \quad \small \color{#3D99F6}{\text{Let }n=m-1} \\ & = \frac 14 \left( \sum_{n=1} ^{2016} \frac 1{2n^2-2n+1} - \sum_{\color{#3D99F6}{m=2}} ^{\color{#3D99F6}{2017}} \frac 1{2\color{#3D99F6}{(m-1)}^2+2\color{#3D99F6}{(m-1)}+1} \right) \\ & = \frac 14 \left( \sum_{n=1} ^{2016} \frac 1{2n^2-2n+1} - \sum_{\color{#3D99F6}{m=2}} ^{\color{#3D99F6}{2017}} \frac 1{2\color{#3D99F6}{m}^2-2\color{#3D99F6}{m}+1} \right) \quad \quad \small \color{#3D99F6}{\text{Putting }m=n} \\ & = \frac 14 \left( \sum_{n=1} ^{2016} \frac 1{2n^2-2n+1} - \sum_{n=2} ^{2017} \frac 1{2n^2-2n+1} \right) \\ & = \frac 14 \left( 1 - \frac 1{2(2017)^2-2(2017)+1} \right) \\ & = \frac 14 \left( 1 - \frac 1{2017 \cdot 4032 +1} \right) \\ & = \frac 14 \left(\frac {2017 \cdot 4032}{2017 \cdot 4032 +1} \right) \\ & = \frac {2017 \cdot 1008}{2017 \cdot 4032 +1} \end{aligned}

p + q = 1008 + 4032 = 5040 \implies p+q = 1008 + 4032 = \boxed{5040}

Thanks for your solution!

Tommy Li - 4 years, 11 months ago

Log in to reply

Your hint completely gave it away...

A Former Brilliant Member - 4 years, 11 months ago

Log in to reply

Oh, I should remove the hint to higher the difficulty of this problem.

Tommy Li - 4 years, 11 months ago

even i used the sophie germain identity

abhishek alva - 4 years, 3 months ago
Tommy Li
Jun 22, 2016

x 4 x 4 + 1 A 2 x 2 2 x + 1 + B 2 x 2 + 2 x + 1 A 2 x ( x 1 ) + 1 + B 2 x ( x + 1 ) + 1 \large \frac{x}{4x^{4}+1}\equiv\frac{A}{2x^{2}-2x+1}+\frac{B}{2x^{2}+2x+1}\equiv\frac{A}{2x(x-1)+1}+\frac{B}{2x(x+1)+1}

x A ( 2 x 2 + 2 x + 1 ) + B ( 2 x 2 2 x + 1 ) x\equiv A(2x^{2}+2x+1)+B(2x^{2}-2x+1)

A = 1 4 , B = 1 4 \Rightarrow A=\frac{1}{4} , B=-\frac{1}{4}

1 4 ( 1 ) 4 + 1 + 2 4 ( 2 ) 4 + 1 + 3 4 ( 3 ) 4 + 1 + + 2016 4 ( 2016 ) 4 + 1 \frac{1}{4(1)^{4}+1}+\frac{2}{4(2)^{4}+1}+\frac{3}{4(3)^{4}+1}+\dots+\frac{2016}{4(2016)^{4}+1}

= 1 4 ( ( 1 2 ( 1 ) ( 1 1 ) + 1 1 2 ( 1 ) ( 1 + 1 ) + 1 ) + ( 1 2 ( 2 ) ( 2 1 ) + 1 1 2 ( 2 ) ( 2 + 1 ) + 1 ) + ( 1 2 ( 3 ) ( 3 1 ) + 1 1 2 ( 3 ) ( 3 + 1 ) + 1 ) + + ( 1 2 ( 2016 ) ( 2016 1 ) + 1 1 2 ( 2016 ) ( 2016 + 1 ) + 1 ) ) =\frac{1}{4}((\frac{1}{2(1)(1-1)+1}-\frac{1}{2(1)(1+1)+1})+(\frac{1}{2(2)(2-1)+1}-\frac{1}{2(2)(2+1)+1})+(\frac{1}{2(3)(3-1)+1}-\frac{1}{2(3)(3+1)+1})+\dots+(\frac{1}{2(2016)(2016-1)+1}-\frac{1}{2(2016)(2016+1)+1}))

= 1 4 ( ( 1 1 1 5 ) + ( 1 5 1 13 ) + ( 1 13 1 25 ) + + 1 2 ( 2016 ) ( 2016 1 ) + 1 1 2 ( 2016 ) ( 2016 + 1 ) + 1 ) ) =\frac{1}{4}((\frac{1}{1}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{13})+(\frac{1}{13}-\frac{1}{25})+\dots+\frac{1}{2(2016)(2016-1)+1}-\frac{1}{2(2016)(2016+1)+1}))

= 1 4 ( 1 1 4032 ( 2017 ) + 1 ) =\frac{1}{4}(1-\frac{1}{4032(2017)+1})

= 1 4 ( 4032 ( 2017 ) + 1 1 4032 ( 2017 ) + 1 ) =\frac{1}{4}(\frac{4032(2017)+1-1}{4032(2017)+1})

= 1008 ( 2017 ) 4032 ( 2017 ) + 1 =\frac{1008(2017)}{4032(2017)+1}

p + q = 1008 + 4032 = 5040 \Rightarrow p+q=1008+4032=5040

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...