Partial Fraction Decomposition?

Level pending

N = lim n 1337 θ = 1 n 1 cos ( θ ) cos ( θ 1 ) N=\lim_{n\to1337}\sum_{\theta=1}^{n}\frac{1}{\cos{(\theta)}^\circ\cos{(\theta-1)}^\circ} What is the sum of the first six digits in the decimal representation of N N ?


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Trevor B.
Jan 19, 2014

We have two angles separated by 1 1^\circ in the denominator, so this might be helpful.

lim n 1337 i = 1 n 1 cos i × cos ( i 1 ) = lim n 1337 i = 1 n sin 1 cos i × cos ( i 1 ) × sin 1 \lim_{n\rightarrow1337}\sum_{i=1}^n\dfrac{1}{\cos i^{\circ}\times\cos(i-1)^{\circ}}\\ =\lim_{n\rightarrow1337}\sum_{i=1}^n\dfrac{\sin1^{\circ}}{\cos i^{\circ}\times\cos(i-1)^{\circ}\times\sin1^{\circ}}

Let's take a look at a way to decompose this fraction by recalling a familiar identity.

tan x tan y = sin x cos x sin y cos y = sin x × cos y sin y × cos x cos x cos y = sin ( x y ) cos x cos y \tan x-\tan y\\ =\dfrac{\sin x}{\cos x}-\dfrac{\sin y}{\cos y}\\ =\dfrac{\sin x\times\cos y-\sin y\times\cos x}{\cos x\cos y}\\ =\dfrac{\sin(x-y)}{\cos x\cos y}

In the problem, x = i x=i^{\circ} and y = ( i 1 ) , y=(i-1)^{\circ}\text{,} so we get this.

sin ( x y ) cos x cos y = sin ( i ( i 1 ) ) cos i cos ( i 1 ) = sin 1 cos i cos ( i 1 ) \dfrac{\sin(x-y)^{\circ}}{\cos x^{\circ}\cos y^{\circ}}\\ =\dfrac{\sin(i-(i-1))^{\circ}}{\cos i^{\circ}\cos(i-1)^{\circ}}\\ =\dfrac{\sin1^{\circ}}{\cos i^{\circ}\cos(i-1)^{\circ}}

So the sum is equal to this. lim n 1337 i = 1 n sin 1 cos i × cos ( i 1 ) × sin 1 = lim n 1337 i = 1 n tan i tan ( i 1 ) sin 1 \lim_{n\rightarrow1337}\sum_{i=1}^n\dfrac{\sin1^{\circ}}{\cos i^{\circ}\times\cos(i-1)^{\circ}\times\sin1^{\circ}}\\ =\lim_{n\rightarrow1337}\sum_{i=1}^n\dfrac{\tan i^{\circ}-\tan(i-1)^{\circ}}{\sin1^{\circ}}

Obviously, this telescopes, so the final answer is equal to this.

tan 133 7 tan 0 sin 1 = tan 133 7 sin 1 = tan 7 7 sin 1 = 248.187 \dfrac{\tan1337^{\circ}-\tan0^{\circ}}{\sin1^{\circ}}=\dfrac{\tan1337^{\circ}}{\sin1^{\circ}} =\dfrac{\tan77^{\circ}}{\sin1^{\circ}}=248.187\ldots

The final answer is 2 + 4 + 8 + 1 + 8 + 7 = 30 2+4+8+1+8+7=\boxed{30}

The limit does not actually exist, because the term 1 cos θ cos ( θ + 1 ) \frac{1}{\cos \theta^\circ \cos (\theta + 1)^\circ} is not defined for θ = 89 \theta = 89 , among other values. The denominator of 0 cannot be "telescoped" away.

Jon Haussmann - 7 years, 4 months ago

I really think this question should be asking for N \lfloor N\rfloor instead of the sum of the first six digits of N . N.

Trevor B. - 7 years, 4 months ago

Log in to reply

Guys!? I think there's no solution in this problem like what Jon stated.

Tunk-Fey Ariawan - 7 years, 4 months ago

Shouldn't it be cos ( i + 1 ) \cos (i+1)^{\circ} in the denominator? I was getting 34 34 .

jatin yadav - 7 years, 4 months ago

Log in to reply

Sorry, it was supposed to be cos ( i 1 ) \cos({i-1})^\circ

Ryan Broder - 7 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...