Partial Fraction maybe, or maybe not

= 1 + 1 3 + 1 3 3 6 + 1 3 5 3 6 9 + 1 3 5 7 3 6 9 12 + \large \Im = 1 + \dfrac {1}{3} + \dfrac {1\cdot 3}{3\cdot 6} + \dfrac {1\cdot 3\cdot 5}{3\cdot 6\cdot 9} + \dfrac {1\cdot 3\cdot 5\cdot 7}{3\cdot 6\cdot 9\cdot 12} + \cdots

If \Im can be expressed as b a \sqrt[a]{b} , where a a and b b are the smallest possible integral values, then type in your answer as a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Fractional Binomial Theorem

Solution from @Akhilesh Prasad, just better presented.

I = 1 + 1 3 + 1 3 3 6 + 1 3 5 3 6 9 + 1 3 5 7 3 6 9 12 + . . . = 0 ! ! 3 0 0 ! + 1 ! ! 3 1 1 ! + + 3 ! ! 3 2 2 ! + 5 ! ! 3 3 3 ! + 7 ! ! 3 4 4 ! + . . . = n = 0 ( 2 n 1 ) ! ! 3 n n ! = n = 0 ( 2 n ) ! 2 n n ! 3 n n ! = n = 0 ( 2 n n ) 1 2 n 3 n As ( 1 / 2 n ) = ( 2 n n ) ( 1 ) n 2 2 n = n = 0 ( 1 / 2 n ) ( 1 ) n 2 n 3 n = ( 1 2 3 ) 1 2 = ( 1 3 ) 1 2 = 3 \begin{aligned} \mathscr I & = 1 + \frac 13 + \frac {1\cdot 3}{3\cdot 6} + \frac {1\cdot 3 \cdot 5}{3\cdot 6 \cdot 9} + \frac {1\cdot 3 \cdot 5 \cdot 7}{3\cdot 6 \cdot 9 \cdot 12} + ... \\ & = \frac {0!!}{3^0 0!} + \frac {1!!}{3^1 1!} + + \frac {3!!}{3^2 2!} + \frac {5!!}{3^3 3!} + \frac {7!!}{3^4 4!} + ... \\ & = \sum_{n=0}^\infty \frac {\color{#3D99F6}{(2n-1)!!}}{3^nn!} \\ & = \sum_{n=0}^\infty \frac {\color{#3D99F6}{(2n)!}}{\color{#3D99F6}{2^nn!}3^nn!} \\ & = \sum_{n=0}^\infty {2n \choose n} \frac 1{2^n3^n} & \small \color{#3D99F6}{\text{As }{-1/2 \choose n} = {2n \choose n} \frac {(-1)^n}{2^{2n}}} \\ & = \sum_{n=0}^\infty {-1/2 \choose n} \frac {(-1)^n2^n}{3^n} \\ & = \left(1-\frac 23\right)^{-\frac 12} = \left(\frac 13\right)^{-\frac 12} = \sqrt{3} \end{aligned}

a + b = 2 + 3 = 5 \implies a + b = 2 + 3 = \boxed{5} .

Sir, what is meant by the double factorial notation?
Edit: I understood it, but can you tell me 8!! = 8×6×4×2 or will we include 0 too?
Sorry, if i sound stupid.

Yatin Khanna - 4 years, 11 months ago

Log in to reply

As 0!, 0!! is defined as 0!! = 1. (2n)!! does not end with 0 but 2, else, everything will be 0, same as (2n)! ends with 1 and not 0.

Chew-Seong Cheong - 4 years, 11 months ago

Log in to reply

Yeah!! Silly me. Thank you very much, Sir!!
By the way, your solutions are too good, I like almost each one of them. The only ones I dont like are the ones I dont understand. :p

Yatin Khanna - 4 years, 11 months ago
Akhilesh Prasad
Jul 4, 2016

The general term of the series can be written as t n = ( 2 n n ) ( 1 2 n 3 n ) = ( 1 ) n 2 n 3 n ( 1 / 2 n ) \displaystyle t_n= \binom {2n} {n} \left(\dfrac{1}{2^n \cdot 3^n} \right)=\dfrac{{(-1)}^n{2}^{n}}{3^n} \displaystyle \binom {-1/2} {n} .

Then all we have to find is = n = 0 t n \displaystyle \Im = \sum_{n=0}^{\infty}{t_n}

So, let's begin

= n = 0 t n = n = 0 ( 1 ) n 2 n 3 n ( 1 / 2 n ) \displaystyle \Im = \sum_{n=0}^{\infty}{t_n}=\sum_{n=0}^{\infty}{ \dfrac{{(-1)}^n{2}^{n}}{3^n} \binom {-1/2} {n}}

= ( 1 2 3 ) 1 / 2 \Im = {\left(1-\dfrac{2}{3} \right)}^{-1/2}

From this we can simply conclude = 3 2 \Im = \sqrt[2]{3}

Hence, a = 2 a=2 and b = 3 b=3 , so a + b = 5 a+b= \boxed{5}

wow nice solution, but can you explain to me what the -1/2 choose n means in the first line of your solution? thanks!!!

Willia Chang - 4 years, 11 months ago
Aviel Livay
Feb 12, 2017

Take a look at the following function:

f ( x ) = ( 1 + x ) 1 2 = = > f ( 0 ) = 1 f(x)=(1+x)^{-\frac{1}{2}} ==> f(0)=1

f ( x ) = ( 1 2 ) ( 1 + x ) 3 2 = = > f ( 0 ) = 1 2 f'(x)=(-\frac{1}{2})*(1+x)^{-\frac{3}{2}} ==> f'(0)=-\frac{1}{2}

f ( x ) = ( 1 2 ) ( 3 2 ) ( 1 + x ) 5 2 = = > f ( 0 ) = 1 3 2 2 f''(x)=(-\frac{1}{2})*(-\frac{3}{2})*(1+x)^{-\frac{5}{2}} ==> f''(0)=\frac{1*3}{2^2}

f ( x ) = ( 1 2 ) ( 3 2 ) ( 5 2 ) ( 1 + x ) 7 2 = = > f ( 0 ) = 1 3 5 2 3 f'''(x)=(-\frac{1}{2})*(-\frac{3}{2})*(-\frac{5}{2})(1+x)^{-\frac{7}{2}} ==> f'''(0)=-\frac{1*3*5}{2^3}

A Maclaurin series is a Taylor series expansion of a function about 0,

f ( x ) = f ( 0 ) + f ( 0 ) x + f ( 0 ) 2 ! x 2 + f ( 0 ) 3 ! x 3 + . . . . f(x) = f(0) + f'(0)*x + \frac{f''(0)}{2!}*x^2 + \frac{f'''(0)}{3!}*x^3 + ....

Or in our case

f ( x ) = 1 1 2 x + 1 3 2 2 2 ! x 2 1 3 5 2 3 3 ! x 3 + . . . . f(x) = 1 - \frac{1}{2}*x + \frac{1*3}{2^2*2!}*x^2 - \frac{1*3*5}{2^3*3!}*x^3 + ....

And now for the punchline...

f ( 2 3 ) = 1 1 2 ( 2 3 ) + 1 3 2 2 2 ! ( 2 3 ) 2 1 3 5 2 3 3 ! ( 2 3 ) 3 + . . . . = f(-\frac{2}{3}) = 1 - \frac{1}{2}*(-\frac{2}{3}) + \frac{1*3}{2^2*2!}*(-\frac{2}{3})^2 - \frac{1*3*5}{2^3*3!}*(-\frac{2}{3})^3 + .... =

1 + 1 / 3 + 1 3 ( 1 3 ) ( 2 3 ) + 1 3 5 ( 1 3 ) ( 2 3 ) ( 3 3 ) + . . . . 1 + 1/3 + \frac{1*3}{(1*3)*(2*3)} + \frac{1*3*5}{(1*3)*(2*3)*(3*3)} + .... =

1 + 1 / 3 + 1 3 3 6 + 1 3 5 3 6 9 + . . . . 1 + 1/3 + \frac{1*3}{3*6} + \frac{1*3*5}{3*6*9} + ....

And we know that f ( 2 3 ) = ( 1 2 3 ) 1 2 = 1 3 1 2 = 3 1 2 = 3 f(-\frac{2}{3})=(1-\frac{2}{3})^{-\frac{1}{2}} = \frac{1}{3}^{-\frac{1}{2}} = 3^\frac{1}{2} = \sqrt{3}

a = 2 , b = 3 a=2, b=3 and so the correct answer is

2 + 3 = 5 2+3 = \boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...